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Abstract 

We have developed new techniques for the prediction of rock physical properties based on 

genetic algorithms and fuzzy logic.  These methods are statistically very different and 

therefore provide alternative methods of prediction to existing methods.  Fuzzy logic is an 

analytical technique that asserts that a reservoir can be broken down into several lithotypes, 

each having characteristic distributions for electrical log values and permeability.  Fuzzy 

logic attempts to uncover the relationships between these distributions.  Genetic algorithms 

use a feedback technique that assumes a continuous functional relationship between the 

electrical log values and rock properties, generating and testing equations that fit predicted 

and observed responses.  Complex non-linear equations are “evolved” until the best fit is 

obtained.  Genetic algorithms provide the functional form of the equation as well as the 

constant parameters of the relationship.   

 

Permeability governs the movement of fluids through reservoir rocks and is therefore critical 

input into 3D reservoir models. Permeability prediction is extremely challenging, as it is 

nearly impossible to measure directly using current sub-surface logging technology.  It is 

useful to complement current technology and to gain insight to older wells without core and 

extensive logging programmes.  This contribution describes improved permeability 

prediction from conventional electrical logs and Nuclear Magnetic Resonance (NMR) data 

using genetic algorithms and fuzzy logic (GAFL) techniques.  
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The measurement of shear sonic velocities is important for understanding reservoir rock 

properties.  Shear sonic velocities are required for rock strength analysis to determine 

fracture propagation and formation breakdown characteristics.  They provide improved 

porosity prediction as it is largely unaffected by fluid type.  It is also becoming important for 

enhanced geophysical interpretation such as AVO.  Because the value of shear velocity 

data is only now being realized and the high cost of acquisition, there is limited amount of 

information available in the North Sea.  Fuzzy logic and genetic algorithms are used to find 

correlations between shear sonic logs and conventional logs like the gamma-ray and density 

logs.  In a recent study, calibration data from four wells with shear velocity data were used to 

predict Vs in all the wells in the field.  This gave the oil company a cost effective method of 

building a 3D reservoir model that resulted in the better location of wells. 

 

We use genetic algorithms to evolve shaly sand equations from Dean and Stark water 

saturations.  This method derives the form of the shaly sand equation and gives an 

independent calculation of special core analysis (SCAL) parameters such as the 

cementation exponent, m and the saturation exponent, n. 

 

We demonstrate, using several field examples, how these new predictive methods can be 

applied in a variety of ways to enhance the understanding of rock physical properties.  A high 

degree of predictive confidence can be obtained by combining predictions made by these 

two disparate techniques, especially in uncored wells.  The new techniques give better 

predictions compared to conventional methods such as multiple linear regression, neural 

networks and cluster analysis. 
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Introduction 

A challenge to the oil industry is to build a reservoir model for cost-effective well placing and 

economic hydrocarbon production.  This problem involves using sparse data from linear 

boreholes to build a 3D model of the reservoir.  The aim of this study is to understand the 

relationship between reservoir parameters and measurements from core and electrical logs.  

These correlations are used to extract as much information as possible from the well data in 

order to improve formation evaluation, reservoir characterization and modelling.   

 

This paper describes how we can improve the understanding of the relationship between 

geological attributes as observed in oil and gas reservoirs and the responses to borehole 

conveyed electrical logs.  This boosts the oil industry’s ability to predict reservoir parameters 

such as permeability, litho-facies and shear velocities especially in uncored areas of the 

field.  To complement this description of the formation rock fabric, our research has also 

developed a technique to understand the distribution of fluids throughout the reservoir.  

From this research, methods were developed to improve the resolution and quality of 

electrical log data itself.  This contribution uses two soft computing techniques, fuzzy logic 

and genetic algorithms, to help with this endeavour. 

 

There are many statistical techniques for making predictions from data in the geological and 

other sciences.  These techniques can be divided into conventional techniques, which 

include least squares regression and cluster analysis [Freund, 1980] and ‘soft computing’ 

techniques [John, 2001] which include fuzzy logic, genetic algorithms and neural networks.  

The soft computing techniques take advantage of powerful, relatively cheap computers that 
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are now available [Cuddy, 2000(a)].  Fuzzy logic and genetic algorithms are considered, for 

reasons given later, to be the most promising for making geoscience predictions and are the 

main tools used in this research.   

 
The Philosophy of Genetic Algorithms   

Genetic algorithms (GAs) are models of computer learning, which derive their behaviour 

from an analogy of the processes of evolution in nature.  The individual organisms in this 

analogy are possible solutions to some given well-defined problem in formation evaluation.  

The analogy is implemented by the creation within a computer of a population of individuals 

represented by GA-chromosomes that are analogous to the DNA chromosomes [Mitchell, 

1999].  These GA-chromosomes take the form of mathematical equations relating the 

solution to a set of input data.  The individuals in the population then go through a process of 

evolution.  Mutation, achieved through random number generation, can play an important 

part in the process.  After a number of generations, the computer uses a fitness function to 

select individuals probabilistically to undergo genetic operations analogous to sexual 

reproduction and cloning.  The fitness function assesses how close the individual comes to 

solving the problem [Back, 1996].  Genetic algorithms use stochastic processes, and as 

they are not random searches for a solution to a problem, they perform better than classical 

optimisation routines.  As in nature, poorly performing individuals die or their species 

become extinct, the computer discards poor solutions.  The computer then iterates using the 

new population, with one iteration being one generation.  Mutation plays a role in the 

process, though it is not the dominant role that is traditionally believed to be the process of 

evolution, i.e., random mutation and survival of the fittest.  It is important to stress that the 

genetic algorithms are not a "random search" for a solution to a problem (highly fit 

individual).  The genetic algorithm uses stochastic processes and random number 

generators but the result is distinctly non-random (better than random) [Back, 1996]. 
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Many scientists believe that the use of computer genetic algorithms is not analogous to 

evolution but merely a variation.  Oxford University evolutionary biologist Richard Dawkins 

saw the border between life and machine start to blur more than 15 years ago.  In his 1986 

book, The Blind Watchmaker [Dawkins, 1986], Dawkins wrote:  

 

"What lies at the heart of every living thing is not a fire, not warm breath, not a 

'spark of life.' It is information, words, instructions.  There is very little difference, 

in principle, between a two-state binary information technology, like ours, and a 

four-state information technology like that of the living cell."   

 

Evolution has been clearly demonstrated to work by the diversity of life on this planet.  There 

are no reasons why the same principles applied to computer software shouldn't work equally 

well, but in minutes rather than in geological time.  Genetic algorithms are not restricted to 

the rules we observed in nature.  For instance mating can involve several parents rather 

than two and individuals can pass on to their offspring characteristics that they have 

acquired during their lifetimes. 

 

Genetic algorithms have been developed and applied for the last forty years [Fang, 1996].  

They are only now being used extensively as they require fast computers, which are now 

more readily available as they are cheaper.  They have several advantages over 

conventional problem solving.  Genetic algorithms 'invent' the equation as well as the 

parameters involved.  For instance if we were attempting to predict water saturation from 

resistivity logs genetic algorithms will derive the special core analysis parameters (SCAL) 

but may also reinvent Archie's saturation equation, a modified version of it, or indeed a 

better equation more fitting to the particular dataset.  The GA technique is therefore 

fundamentally empirical.  If we were attempting to predict permeability from the nuclear 
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magnetic resonance tool genetic algorithms may re-invent the Coates equation or 

something similar or better.  Prior knowledge of the equations is therefore not necessary.  

The method does not fall into the group called 'Black Box' techniques such as neural 

networks as the equations they uncover clearly show the relationship between variables 

[Gurney, 2000].  The equations can be transferred easily between computer systems, say 

to a spreadsheet.  Genetic algorithms avoid the problems of conventional problem solving 

techniques as they escape easily from local minima and are relatively insensitive to data 

outliers and noise. 

 
The Philosophy of Fuzzy Logic  

Fuzzy logic is an analytical statistical technique whereas the use of genetic algorithms is a 

feedback technique.  Fuzzy logic is an extension of conventional Boolean logic (zeros and 

ones) that has been developed to handle the concept of "partial truth", i.e., truth values that 

lie between "completely true" and "completely false".  Dr. Lotfi Zadeh of UC/Berkeley 

introduced it in the 1960s as a means to model uncertainty [Zadeh, 1965].  Science and our 

way of thinking is heavily influenced by Aristotle's laws of logic formulated by the ancient 

Greeks and developed by many scientists and philosophers since then [Kosko, 1993].   

 

Aristotle's laws are based on "X or not-X"; a thing either IS, or IS NOT.  This has been used 

as a basis for almost everything that we do.  We use it when we classify things and when we 

judge things.  Managers want to know whether something is ‘this’ or ‘that’, and even movies 

have stereotype goodies and baddies.  Conventional logic is an extension of our subjective 

desire to categorize things.  Life is simplified if we think in terms of black and white.  This way 

of looking at things as true or false was reinforced with the introduction of computers that 

only use the binary digits 1 or 0.  When the early computers arrived with their machine-driven 

binary system, Boolean logic was adopted as the natural reasoning mechanism for them.  
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Conventional logic forces the continuous world to be described with a coarse approximation; 

and in so doing, much of the fine detail is lost.   

 

We miss a lot in the simplification.  By only accepting the two extreme possibilities, the 

infinite number of possibilities in between them is lost.  Reality does not work in black and 

white, but in shades of grey.  Not only does truth exist fundamentally on a sliding scale, it is 

also perceived to vary gradually by uncertainties in measurements and interpretations.  

Hence, a grey scale can be a more useful explanation than two end points.  For instance, we 

can look at a map of the Earth and see mountains and valleys, but it is difficult to define 

where mountains start and the valleys end.   

 

This is the where mathematics of fuzzy logic comes in.  Once the reality of the grey scale has 

been accepted, a system is required to cope with the multitude of possibilities.  Probability 

theory helps quantify the greyness or fuzziness.  It may not be possible to understand the 

reason behind random events, but fuzzy logic can help bring meaning to the bigger picture.  

Take, for instance, a piece of reservoir rock.  Aeolian rock generally has good porosity and 

fluvial rock poorer porosity.  If we find a piece of rock with a porosity of 2 porosity units (pu), 

is it aeolian or fluvial?  Since this has a low porosity value we could say it is definitely fluvial 

and get on with more important matters.  But let's say it is probably fluvial but there is a slim 

probability that it could be aeolian.  Aeolian rocks are generally clean (i.e., contain little or no 

clay minerals) and fluvial rocks shalier (i.e., contain clay minerals).  The same piece of rock 

contains 20% clay minerals.  Now, is it aeolian or fluvial?  We could say it is approximately 

equally likely to be aeolian or fluvial based on this measurement.  This is how fuzzy logic 

works.  It does not accept something is either ‘this’ or ‘that’.  Rather, it assigns a greyness, or 

probability, to the quality of the prediction on each parameter of the rock, whether it is 

porosity, shaliness or colour.  There is also the possibility that there is a measurement error 
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and the porosity is 20 pu not 2 pu.  Fuzzy logic combines these probabilities and predicts 

that, based on porosity, shaliness and other characteristics, the rock is most likely to be 

aeolian and provides a probability for this scenario.  However, fuzzy logic says that there is 

also the possibility it could be fluvial, and provides a probability for this to be the case too.   

 

In essence, fuzzy logic maintains that any interpretation is possible, but some are more 

probable than others.  One advantage of fuzzy logic is that we never need to make a 

concrete decision.  In addition, fuzzy logic can be described by established statistical 

algorithms. Computers, which themselves work in ones and zeros, can do this effortlessly 

for us.   

 

Geoscientists live with error, uncertainty and fragile correlations between data sets.  These 

conditions are inherent to the geosciences, because of the challenge of designing and 

building sensors to measure complex formations in hostile environments.  Even in the 

laboratory it is difficult to relate a log response to a physical parameter.  Several perturbing 

effects such as mineralogy, fluids and drilling fluid invasion can influence a simple 

measurement, say porosity.  Conventional techniques try to minimize or ignore the error.  

Fuzzy logic asserts that there is useful information in this error.  The error information can be 

used to provide a powerful predictive tool for the geoscientist to complement conventional 

techniques.   

 
How the Concept of Fuzziness helps Predict Litho-facies  

There are two causes of the fuzziness in reservoir rocks.  The first is measurement error and 

the second is due to classification.  It is clear that random error in a measurement of a 

variable like porosity will give arise to fuzziness in the answer.  However, we assert it is the 

second cause, classification, is the main cause of fuzziness, and fuzzy logic deals with this 

directly.  If the rock type is sub-divided into more detailed classifications such as dune, fluvial 
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or sabkha sands, each classification or bin becomes more crisp, the opposite of fuzziness 

[Kosko, 1993].  

 

Take two classifications of reservoir rock, aeolian dune and sabkha sandstones.  In this 

example the aeolian dune sandstones are considered to have good reservoir potential with 

an average porosity of 20 pu [Schlumberger, 1997] and the sabkha are considered to be 

poorer reservoir sandstones with an average porosity of 10 pu.  Now consider a third 

specimen of reservoir sandstone exhibiting a porosity of 15 pu.  This could belong to a third 

independent classification, but if we are forced to select whether this specimen is associated 

with the good aeolian or the poor sabkha reservoir there is a problem.  This is because the 

sample porosity of 15 pu is equidistant from the 20 pu aeolian sandstone and the 10 pu 

sabkha sandstone.  However, Figure 1 shows that the sabkha sandstone has a wider and 

fuzzier distribution of possible porosity values than the aeolian sandstone.  A reason for this 

could be that the sabkha sandstone contains more sub-types than the aeolian sandstone, 

which by comparison has been defined more precisely.  As a consequence Figure 1 shows 

that 15 pu is more likely to be associated with sabkha sandstone rather than the aeolian 

sandstone as 15 pu is seen to occur higher on the probability distribution of the sabkha 

sandstone that of the aeolian sandstone.  This example demonstrates how the 

understanding of the fuzziness of a classification is as valuable as knowing its average 

value. 

 

This paper describes how our research led to the development of techniques to apply the 

theory of fuzzy logic to geoscience problems such as formation evaluation and reservoir 

characterisation.  These techniques have been incorporated in petrophysical software 

packages and tested on several and gas fields by the major oil companies. 

 
Fuzzy Mathematics of Litho-facies Prediction 
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This paper describes how we developed the philosophical ideas, concepts and practical 

software techniques of fuzzy logic to build a novel and original mathematical framework.  

This new mathematics is the basis of software that we developed to solve formation 

evaluation and reservoir characterisation problems.  Many of the ideas deviate from 

conventional statistical theory, such as Bayes Theorem, but have been shown to work on 

the many oil field databases available to this research. 

 

We start with the mathematics of the normal distribution [Freund, 1980].  This is given by 

πσ

σµ
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22 2/)( −−
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where P(x) is the probability density that an observation x is measured in the data-set 

described by the arithmetic mean µ and its standard deviationσ.   

 

In conventional statistics the area under the curve described by the normal distribution, say 

between x1 and x2, represents the probability of a variable x falling into that range,.  The 

curve itself represents the relative probability of variable x occurring in the distribution.  That 

is to say, the mean value is more likely to occur than values 1 or 2 standard deviations away 

from it.  This curve is used to estimate the relative probability, or fuzzy possibility, that a data 

value belongs to a particular data set.  If a litho-facies type has a porosity distribution with a 

mean µ and standard deviation σ the fuzzy possibility that a well log porosity value x is 

measured in this litho-facies type can be estimated [Freund, 1980].  The mean and 

standard deviation are estimated from the calibrating or conditioning data set, usually core 

data in our applications. 

 

Where there are several litho-facies types in a well, the porosity value x may belong to any of 

these litho-facies, but some are more likely than others.  Each of these litho-facies types has 
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its own mean and standard deviation, such that for f litho-facies types there are f pairs of µ 

and σ.  If the porosity measurement is assumed to belong to litho-facies f, the fuzzy 

possibility that porosity x is measured (logged) can be calculated using Equation 1 by 

substituting µf and σf.  Similarly, the fuzzy possibilities can be computed for all f litho-facies.  

These fuzzy possibilities refer only to particular litho-facies and cannot be compared directly 

as they are not additive and do not sum to unity.   

 

We solved the problem of comparing the fuzzy possibilities between the f litho-facies as 

follows.  We would like to know the ratio of the fuzzy possibility for each litho-facies to the 

fuzzy possibility of the mean or most likely observation.  This is achieved by de-normalizing 

Equation 1, which simplifies the equation and is necessary if information about the relative 

occurrence of the facies is to be used in the prediction. 

 

The fuzzy possibility of the mean observation µf being measured is 
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The relative fuzzy possibility R(xf) of a porosity x belonging to litho-facies type f compared to 

the fuzzy possibility of measuring the mean value µf is Equation 1 divided by Equation 2 
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Each fuzzy possibility is now self-referenced to all possible litho-facies types.  The different 

litho-facies possibilities still cannot be compared directly as the calibration of each 

litho-facies may be based on a different sample size.  For instance the four litho-facies types; 

aeolian, fluvial, sabkha and shale may have relative abundances in the reservoir section of 

70%, 15%, 10% and 5% respectively.  To compare the computed possibilities derived using 

Equation 3 would give undue weighting to the less frequently occurring litho-facies, sabkha 

and shales.  

 

We solved this problem by devising a method to compare different bin sizes, which is 

described below. 

 

The relative occurrence of each litho-facies type in the formation must be taken into account 

in order to compare these fuzzy possibilities between litho-facies.  We propose that this can 

be achieved by multiplying Equation 3 by the square root of the ‘expected occurrence’ of 

litho-facies f.  The expected occurrence is the percentage occurrence of the specimens in 

the calibrating sample.  This assumption is based on the observation that rare litho-facies in 

the calibrating data set, say limestone stringers or coal beds, it will not be a predominant 

facies elsewhere in the field.  This assertion is support by sensitivity studies. 

 

Therefore if the expected occurrence is denoted by nf, the fuzzy possibility of measured 

porosity x belonging to litho-facies type f is: 

     

F x n ef f
x f f( ) ( ) /= − −µ σ2 22

. (4) 

 

This square root term was determined from sensitivity studies on a number of fields.  We 

introduced the term ‘fuzzy possibility’ to differentiate and contrast it from the conventional 
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statistical term ‘probability’ to emphasis that fuzzy logic is drifting subtly away from 

conventional statistics.   

 

The next challenge is to use not one curve to predict a litho-facies type, but several, and 

perhaps dozens.  We solved this problem by devising a novel way to combine fuzzy 

possibilities, as described below. 

 

So far we have described how it is possible to calculate the fuzzy possibility F(x f) is based on 

the porosity measurement (log), x, alone.  This process can be repeated for a second log 

type such as the volume of shale, y.  This will give F(yf), the fuzzy possibility of the measured 

volume of shale y belonging to litho-facies type f.  This process can be repeated for another 

log type, say z, to give F(zf).  At this point we have several fuzzy possibilities (F(xf), F(yf), 

F(zf) ….) based on the fuzzy possibilities from different measurements (x, y, z .…) predicting 

that litho-facies type f is most probable.  We propose that these fuzzy possibilities should be 

combined harmonically to give a combined fuzzy possibility Cf, where 
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Combining the fuzzy possibilities harmonically is repeated for each of the f litho-facies types.  

The litho-facies that is associated with the highest combined fuzzy possibility is taken as the 

most likely litho-facies for that set of logs.  The associated fuzzy possibility Cf(max) provides 

the confidence factor for the litho-facies prediction.     

 

Litho-facies prediction using fuzzy logic is based on the assertion that a particular 

litho-facies type can give any log reading although some readings are more likely than 
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others [Kosko 1993].  For instance, clean aeolian sand is most likely to have a high 

porosity, although there is a finite probability that the logging tool could measure a low 

porosity.  It is important to have a comparable set of logs between wells, although accuracy 

is not essential.   

 

For the prediction of rock attributes across a reservoir containing several or several hundred 

wells it is necessary to ensure that all curves are normalised and comparable between wells.  

The physics of each tool measurement requires different normalisation procedures.   

 

Even after careful calibration and normalisation the log curves may still contain residual 

systematic errors.  This could be due to use of different logging contractors, the vintage of 

the logging tools and nature of additives to the borehole fluid (mud).  This is where the fuzzy 

logic technique excels because it uses the fuzziness of each calibration bin rather than 

merely trying to minimise it.  As several wells are used in the fuzzy logic calibration any 

systematic error is reflected in an increase in the fuzziness of each calibration bin.  As a 

result the technique will naturally favour any logging measurement which is less fuzzy, or 

crisp.  Crispness is defined as the opposite of fuzziness [Kosko, 1993]. 

 

During the calibration of the fuzzy logic technique the mean and standard deviation for each 

litho-facies type and each log response are determined.  Consequently the calibration uses 

an array of data as shown in Figure 2. 

 
The Fuzzy Mathematics of Permeability Prediction 

Litho-facies prediction using fuzzy logic is based on the assertion that a particular 

litho-facies type can give any log reading, although some readings are more likely than 

others.  Fuzzy logic is used for litho-facies prediction by assigning a data bin to each 

litho-type.  The challenge for litho-typing is how to combine the fuzzy possibilities between 
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the litho-types as the litho-facies are not equally frequent in the cored section of the well.  

Predicting aperiodic data (i.e., not occurring at regular intervals) such as permeability using 

fuzzy logic avoids this problem by ensuring, at the outset, that the bins are of equal size (i.e., 

contain the same number of samples or occurrences).  First the core permeability values are 

scanned by the program and divided into ten (or more) equal bin sizes.  That is to say that 

the bin boundaries are determined so that the number of core permeabilities in Bin 1 

represents the tenth percentile boundary of the logged permeability data.  Bin 2 represents 

the twentieth percentile boundary and so on.  In this example there are ten divisions in the 

data but there is no reason why there could not be twenty or more.  Each one of these bins is 

then compared to the electrical logs.  The log data associated with levels in the well 

corresponding to Bin 1 (very low permeability) are analysed and their mean and standard 

deviation calculated.  In this way, not only is the average or most probable log value 

associated with Bin 1 calculated, but also some idea of the uncertainty in the measurement 

is obtained.  Fuzzy logic asserts that a particular electrical log value can be associated with 

any permeability, but some are more likely than others.  Fuzzy logic is applied to the 

prediction of other rock attributes by a similar manipulation of the bins.   

 

The program uses any number of permeability bins with any number of input curves.  The 

distribution of bin boundaries depends on the range of expected permeabilities, as 

described above.  The number of bins depends on the number of core permeabilities 

available for calibration, the statistical sample size.  A reasonable minimum sample size for 

fitting a normal distribution is around 30 [Freund, 1980].  Consequently the number of bins 

is determined so that that there are at least 30 sample points per bin.  For a well with 300 

core permeabilities it would be appropriate to use 10 permeability bins.  This description 

assumes that we are dealing with horizontal core plugs and the prediction of horizontal 
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permeability.  Vertical permeability can be predicted simultaneously by simply comparing 

the core vertical permeabilities with the logs in a similar manner. 

 
The Fuzzy Mathematics of Shear Velocity Prediction 

We have described how fuzzy logic was first applied to litho-facies prediction and how this 

was modified for permeability prediction.  We further developed fuzzy logic to predict 

continuously varying values such as shear velocities.  The measurement of shear velocities 

is important for understanding reservoir rock properties [Boonen, 2001].  Shear sonic data 

(Dts) is required for rock strength analysis to determine fracture propagation and formation 

breakdown characteristics, and for improved porosity prediction as Dts is largely unaffected 

by fluid type.  Shear sonic data are also becoming important for enhanced seismic 

interpretation [Boonen, 2001].  Because the value of shear velocity data is only now being 

realized, and because such data is expensive to acquire, there is limited amount of 

information available. 

 

Fuzzy logic is used for litho-facies prediction by assigning a data bin to each litho-type.  The 

challenge for litho-typing is how to combine the fuzzy possibilities between the litho-types as 

the litho-facies are not equally frequent in the cored section of the well.  As with permeability 

prediction, shear velocity prediction avoids this problem by ensuring, at the outset, that the 

bins are of equal size.  Unlike core data, shear velocity data is regularly sampled.  Shear 

velocity data is periodic data whereas core data is aperiodic.  This allows the shear velocity 

data to be displayed on plots as a continuous curve against depth unlike the core data, 

which contains many gaps between depths, must be displayed as large dots. 

 

First the continuous shear velocity log is scanned by the program and divided into around 

ten equal bin sizes on a linear scale.  That is to say that the bin boundaries are determined 

so that the number of shear velocity data points in Bin 1 represents the tenth percentile 
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boundary of the permeability data.  Bin 2 represents the twentieth percentile boundary and 

so on.  Each one of these bins is then compared to the electrical logs.  The log data 

associated with levels in the well corresponding to Bin 1 (slow velocities) are analysed and 

their mean and standard deviation calculated.  In this way, not only is the average or most 

probable log value associated with Bin 1 calculated, but also some idea of the uncertainty in 

the measurement is obtained.  Fuzzy logic asserts that a particular electrical log value can 

be associated with any shear sonic value, but some are more likely than others.   

 
Why Permeability Prediction is Important for Field Studies 

Knowledge of permeability, the ability of rocks to flow hydrocarbons, is important for 

understanding oil and gas reservoirs.  Permeability is best measured in the laboratory on 

cored rock taken from the reservoir [Glover, 1998].  However coring is expensive and 

time-consuming in comparison to the electronic survey techniques most commonly used to 

gain information about permeability.  In a typical oil or gas field all boreholes are "logged" 

using electrical tools to measure geophysical parameters such as porosity and density.  

Samples of these are cored, with the cored material used to measure permeability directly.  

The challenge is to predict permeability in all boreholes by calibration with the more limited 

core information.   

 

In principle, determining permeability from electrical measurements is a matter of solving 

equations in rock physics [Glover, 1998].  In practice, there are numerous complicating 

factors that make a direct functional relationship difficult or impossible to determine.  One 

problem is that permeability is related to the aperture of pore throats between rock grains, 

which logging tools find difficult to measure.  Several perturbing effects such as mineralogy, 

reservoir fluids and drilling fluid invasion can influence the permeability measurement.  

Litho-facies determination is a clear application of fuzzy logic as the litho-facies types are 

described in clear "bin" types such as aeolian or fluvial.  One of the main drivers behind 
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litho-typing is to understand permeability, as the different litho-facies exhibit different 

permeabilities.  We soon realized that fuzzy logic could be used to predict permeability 

directly, by-passing the litho-facies step.  This paper describes that application to a North 

Sea field. 

 

Permeability is a very difficult rock parameter to measure directly from electrical logs as it is 

related more to pore throats rather than pore size.  Permeability is essentially a dynamic 

quantity whereas the electrical logs are static measurements.  There is a weak correlation 

between porosity and permeability that explains the spread of points on poroperm 

cross-plots.  Determining permeability from logs is further complicated by the problem of 

scale; most well logs measure several cubic metres of rock whereas core plugs, from which 

actual permeabilities are measured, contain only a few cubic centimetres of reservoir rock.  

In addition to these issues, there are measurement errors on both the logs and core.  When 

you add these problems together it is surprising that predictions can be made at all.  The 

mathematics of fuzzy logic provides a way of not only dealing with the errors, but also using 

them to improve the prediction.  Genetic algorithms give an alternative method of predicting 

permeability.  This application is also described, and contrasted with fuzzy logic, in this 

paper. 

 

The objective of this application of GAFL (Genetic Algorithms and Fuzzy Logic) was to 

predict permeability in all the wells in a North Sea field based on calibration to core from the 

cored wells.  This work was required by the oil company in order to select intervals for 

perforation.  The determination of a permeability curve, with considerable confidence, 

enabled the oil company to focus on key intervals for perforation, resulting in a significant 

cost saving for each well.  Permeability was predicted using both the fuzzy logic and genetic 

algorithms techniques 
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Permeability Prediction using Genetic Algorithms  

Our objective was to construct empirically a function f(φ,Vsh) which predicts permeability at 

each depth, given φ, Vsh and at each depth.  We were therefore searching for an 

appropriate function of the form, 

 

 Permeability = f(φ,Vsh) = [a φ b] •1 [c Vsh d ] •2 [e] .  (6) 

 

where •1, •2 represent the algebraic operators addition and multiplication, a, c and e are 

unknown constants, and b and d are unknown constant exponents. 

 

Each of the wells was divided into three zones: An upper zone with good reservoir quality, a 

middle zone of poorer porosity and a thinly bedded lower zone.  A separate genetic 

algorithm was evolved for each zone.  These are: 

 
Zone a b c d e •1 •2 

1 -5.3588 -0.0268 -3.1070 0.0855 10.261 "+" "+" 
2 -6.7399 -0.0108 -1.8061 0.3572 9.7143 "+" "+" 
3 -4.4857 -0.0009 -0.8341 0.0267 5.3503 "+" "+" 

 
The genetic algorithm constants show that permeability is influenced by both reservoir 

porosity and shaliness.  The permeability predicted by this genetic algorithm is shown in 

track 4 (4th column from the left) of Figure 3.   

 
Permeability Prediction using Fuzzy logic  

In the study field all curves were assessed for their suitability to predict permeability by 

analysing the correlation coefficients of the log variables and core permeabilities.  Although 

all logs are have some degree of interdependence the six best curves are: PHIE, PHIT, 

VSH, NLITH, DT and the HEIGHT above the free-water-level.  The effective porosity, PHIE, 

derived from the density log, has the best correlation coefficient.  The sonic transit time, DT, 
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gives a different form of effective porosity, perhaps indicating any secondary porosity.   VSH 

and PHIT provide shaliness information and NLITH is a lithology indicator.  The HEIGHT 

above the free water level is included as it is believed that there is a relationship between 

height and permeability as the reservoir fill reduces diagenetic effects.  Again RHOB is not 

used as it was used in the PHIE determination and SW was not appropriate as it is product 

with PHIE is a constant at a particular depth in the reservoir.  As with the genetic algorithms 

technique, fuzzy logic uses stratigraphic and flow unit information.  

 

Fuzzy logic asserts that the reservoir consists of several litho-types, each having 

characteristic distributions for permeability and electrical log values.  Fuzzy logic attempts to 

uncover the relationship between these distributions based on calibration to core data from 

the five cored wells.  Permeability is predicted based on these calibrations and is shown in 

track 5 of Figure 3.   

 
The Value of Shear Velocity Data 

The measurement of shear velocities is an important parameter for understanding reservoir 

rock properties.  Shear sonic data is used in strength analysis to determine fracture 

propagation and formation breakdown characteristics, and for improved porosity prediction 

[Boonen, 2001].  Shear sonic data are also becoming important for enhanced seismic 

interpretation [Debski, 1995]. 

 

There is limited amount of shear data information available in the North Sea as it is 

expensive to acquire and he value of shear velocity data has only been recently realized and 

because such data [Chen, 1998].  This lack of data has been especially acute in this field 

where only six wells acquired shear data whilst logging.  Shear data acquisition requires 

special technology and is difficult to obtain especially in deviated wells.  Two of the shear 
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logs from the field being analysed were subsequently discounted as the data was shown to 

be suspect.   .   

 
Using Genetic Algorithms to Predict Shear velocities 

A genetic algorithm comprises of variables, constants and algebraic operators.  The 

variables are, in this application, the borehole electrical logs that are typically recorded on a 

regular half-foot sample rate (i).  For this description consider, for example, 4 variables or 

electrical logs: shear velocity dts, formation porosity φ, formation resistivity Rt, and the 

volume of shale Vsh.  A genetic algorithm attempts to evolve a relationship between shear 

velocities dts, and porosity φ, formation resistivity Rt, and the volume of shale Vsh.  Note that 

porosity is the measure of pore space in the rock matrix that is filled with reservoir fluids such 

as oil, gas and water.  Formation resistivity is the inverse of the electrical conductivity of the 

fluid-saturated rock.  The volume of shale, in this context, is a normalized measure of the 

radioactivity of the rock matrix by measuring the formation gamma-ray background. Porosity 

φ, Rt and Vsh are measured by borehole electrical logs.  

 

Our objective is to construct empirically a function f(φ,Rt,Vsh) which predicts shear velocities 

at each depth, i given φ, Rt, Vsh at each depth.  We are therefore searching for an 

appropriate function of the form 

 
 Dts = f(φ,Rt,Vsh) = [a φ b] •1 [c Rt d] •2 [e Vsh g ] •3 [h]    (7) 

 
where •1, •2, •3 represent the algebraic operators addition and multiplication, a, c, e, and h 

are unknown constants, and b, d, and g are unknown constant exponents.  The algebraic 

operators represent addition and multiplication and determine how the constants are 

actually used.  The constants are allowed to be negative which allows that the algebraic 

operators to also represent subtraction and division. 
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The next step is to provide a method for determining how good a given f(φ,Rt,Vsh) is as a 

predictor of Dts.  The approach we adopt is to sum absolute deviations in prediction over all 

depth levels for a given borehole.  We seek a function of the form Equation 7 which 

minimizes this sum.  A more standard way to do this might be to use least squares rather 

than absolute values of residuals.  The reason for the approach that we take is that the 

borehole data is noisy and includes many “outliers”.  These can only be removed by 

extensive manual editing of the data sets and rechecking of measurements.  By using the 

absolute value of residuals, one diminishes the effect of noise and outliers and produces 

more appropriate predictor functions.  Mathematically, the problem can be stated as: 

 

 ∑
=

=

−
Ni

i
iiiif

VshRtfDtsMinimise
1

),,(: φ     (8) 

 
The genetic algorithms were constructed as follows.  An initial population of individuals is 

picked randomly in the solution space.  Each individual has randomly chosen constants a  ,b 

,c ,d , e, g, h and operators •1, •2, •3.  The fitness criterion of each of these individuals is 

determined by Equation 7.  The best existing algorithm for minimising Equation 8 starts with 

a randomly generated f and uses local search by mutating the coefficients one at a time or 

flipping the operator between an addition and a multiplication.  The coefficients are initially 

allowed to undergo large mutations in order that the individuals search all of the solution 

space.  After a number of generations a pool of individuals is selected, by linear ranking, for 

mutating and cloning.  Mating is achieved by coefficient merging.  Some of the best 

individuals are cloned to add more individuals, where solutions are most promising.  After a 

number of generations the mathematical operators are fixed and the percentage change in 

mutated coefficients is gradually reduced.  The algorithm stops when the percentage 

improvement in evaluation reaches a predefined lower limit or a maximum number of 

iterations has been reached.  
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In the language of genetic algorithms we have a CHROMOSOME , which is a vector of 

length 10. The CHROMOSOME is, as in genetics, a structure than contains all the genes. 

Three genes are binary integer values that represent the mathematical operators •1, •2, •3.  

The rest of the genes are floating point values that represent the coefficients a, b, c, d, e, g, 

h. The initial population is generated by creating chromosomes with a random binary 

numbers for •1, •2, •3 and random floating point numbers for the coefficients a, b, c, d, e, g, h.  

If the gene represents the operator •, its value is binary and it will be switched.  If the gene 

represents one of the real variables, it will be modified by multiplication by a randomly picked 

value from a certain range.  This range decreases in value as the number of generations 

increases.  This provides a method that allows the search to become more local towards the 

end of the algorithm as better solutions emerge.  

 

The following equation was derived for the prediction of Vs using Genetic Algorithms.   

( ) ( ) ( ) heVshcRtaDts gdb +++= φ   (9) 

Where: 
a  b  c  d  e  g  h 

0.014120    2.033557    0.002983   -2.729030   -6.741331    1.354442   56.006934  

 

Equation 9 is the form of the equation evolved using genetic algorithms.  It is possible that an 

alternative equation of the form of Equation 10 could have been suggested by the software.   

( )
bVsh
RtaDts ⋅

=
φ   (10) 

It is important to stress that the genetic algorithms returns the form of the equation as well as 

the constants.  The form of the equation is controlled by the mathematical operators •1, •2, 

•3.  The results are shown in Figure 4. 
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The Prediction of Shear Velocities using Fuzzy Logic  

Fuzzy logic was used to predict shear velocities.  Fuzzy logic is particularly useful in 

predicting shear velocities because of its nature as a binning technique.  In this application 

the reservoir can be thought of consisting of between twenty litho-facies types each of which 

has a characteristic shear velocity.  Each of this litho-facies will have a characteristic set of 

petrophysical values for density, shaliness and formation resistivity.   

 

The fuzzy logic program first scans the entire reservoir interval for all wells containing shear 

data.  This data is divided into fifteen equal bin sizes on a linear scale.  That is to say that the 

bin boundaries are determined so that the number of shear velocity data points in Bin 1 

represents the fifteenth percentile boundary of the permeability data.  Bin 2 represents the 

fourteenth percentile boundary and so on.  Each one of these bins is then compared to the 

electrical logs.  The log data associated with levels in the well corresponding to Bin 1 (slow 

transit time) are analysed and their mean and standard deviation calculated.  In this way, not 

only is the average or most probable log value associated with Bin 1 calculated, but also 

some idea of the fuzziness in the measurement is obtained.  Fuzzy logic asserts that a 

particular electrical log value can be associated with any shear sonic value, but some are 

more likely than others.   

 

It is intuitive that litho-facies with low transit times (fast velocities) will generally have 

different densities and gamma-ray readings compared to litho-facies with high transit times.  

This is reflected by the mean value for the density log readings associated with the 100 to 

110 µsec/ft bin being different than that of the fourteen other bins.  The fuzzy logic program 

determines the mean and variance for each of the bins.  The variance represents the 

fuzziness of each distribution.  The fuzzy logic program analyses all the wells with shear 

data and creates an array of means and variances.   



 

Page 25 

This array of data represents the relationship, or calibration, between the input curves: DTP, 

NLITH, MLITH, VSH, RT, RHOMA and DTS.  The array was used to predict DTS in all wells 

in the study field.   

 
Water Saturation Modelling using Genetic algorithms  

Genetic Algorithms can used to derive a shaly sand equation.  The input curves for this 

equation include conductivity, normalised gamma-ray and the porosity.  Genetic algorithms 

were used to evolve the form of the shaly sand equation as well as the constants a, m and n.   

 

The objective is to determine an equation so that the predicted water saturations are as 

close as possible to core derived water saturations.  Equations 11 and 12 are example of 

possible results. 
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Where: 
Sw   = Water saturation  
f  = Porosity  
Rt, Rsh, Rw  = Resistivities  
Vsh  = Volume of shale 
a, m, n, Rw = Constants (the genes) 
 

The results are shown in track 4 of Figure 5.  Here we use genetic algorithms to evolve shaly 

sand equations from Dean and Stark water saturations.  This method derives the form of the 

shaly sand equation and gives an independent calculation of special core analysis (SCAL) 

parameters such as m, the cementation exponent, and n, the saturation exponent. 
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Discussion and Conclusions  

Both the Fuzzy Logic and Genetic Algorithms predictors are broadly similar, providing 

confidence in the premise that it is possible to derive permeability from the electrical logs.  

This was not obvious as permeability is essentially a dynamic measurement whereas the 

electrical logs are static measurements.  It is important to note that both genetic algorithms 

and fuzzy logic are empirical techniques and requires a calibrating data set.  As with other 

techniques a consistent set of curves is required.  Even after careful calibration and 

normalisation the log curves may still contain residual systematic error.  This could be due to 

use of different logging contractors, the vintage of the logging tools and nature of additives to 

the borehole fluid (mud) [Schlumberger, 1997]. 

 

The genetic algorithms technique produces a clear mathematical relationship that can be 

used in spreadsheets and other programs.  Genetic algorithms do not require prior 

knowledge of the structure of this relationship.  The equations produced by genetic 

algorithms indicate the most important input parameters by comparing constants and power 

functions.  In contrast, fuzzy logic requires analysis of a look up table. 

 

Genetic algorithms give a more continuous output compared to fuzzy logic, which is a 

binning technique.  Genetic algorithms are less sensitive to outliers and noise compared to 

fuzzy logic because absolute rather than least squares minimisation is used.  This speeds 

up data input as the calibration datasets do not require extensive manual editing before they 

can be used. 

 

Fuzzy logic is self-calibrating technique.  For most applications it is not necessary to select 

and optimise parameters to ensure that is best result.  There are no crossplots to make or 

parameters to pick.  However, careful thought is required to the design of the fitness function 
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which determines whether the genetic algorithms are improving and fit for survival.   

Mathematically these are easy to program but a clear understanding of what is required from 

the genetic algorithms to achieve is not a simple task.   

 

Because genetic algorithms use absolute minimisation and because fuzzy logic is a binning 

technique they both give good predictions at the extremes of high and low permeabilities 

whereas other techniques, by their nature, regress towards their mean values.  In formation 

evaluation knowledge of extreme values is important as these often the main conduits to 

flow and barriers to production.  In other words, the technique retains the natural 

heterogeneity of the measured system, compared to other techniques which tend to 

artificially homogenise the data, which amounts to a scale change, bearing in mind that 

some of the parameters we want to extract such as permeability are not scale invariant. 

 

Genetic algorithms require all the curves to exist to make a prediction and will ‘fall-over’ if 

one curve is missing.  This is important as oil and gas wells often have missing and 

incomplete log suites.  For this reason the genetic algorithms in this example used only the 

porosity and shaliness logs as these exist, with confidence, in all wells over the entire 

reservoir.  Even where all curves exist, genetic algorithms can be sensitive to one rogue 

input.  In contrast fuzzy logic is an analytical technique and provides a statistical best answer 

based on all the input data. 

 

Both the fuzzy logic and genetic algorithms techniques required only a couple of minutes of 

computer time to reach an answer.  Genetic algorithms become more cumbersome when 

the number of variables (electrical logs) increases.  In contrast, adding extra curves to fuzzy 

logic is a trivial, if not an automatic task.  Fuzzy logic can effectively deal with an unlimited 

number of input curves and processing time is virtually independent of number of inputs 
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variables.  Computing time to reach an acceptable solution for genetic algorithms is 

proportional to number of genes to be determined.  Due to speed of modern computers this 

is not a serious disadvantage.   
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Figure 1 Using Fuzziness to Compare Probabilities 

 

Figure 2: The Calibration of the Fuzzy Logic Technique  
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Figure 3:  The Prediction of Permeability using Genetic algorithms and Fuzzy Logic  
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Figure 4: The Prediction of Shear Velocities using Fuzzy Logic & Genetic Algorithms  
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Figure 5: Determination of Shaly Sand Saturation Equations 
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