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Th i i i bili h d li f i l f b d i d i h h Fluid flow was modelled in 2D plan view in the measured rock fractures in a FThe intrinsic permeability or hydraulic aperture of single fractures can be determined with the Fluid flow was modelled in 2D plan view in the measured rock fractures in a FThe intrinsic permeability or hydraulic aperture of single fractures can be determined with the
environment. The image analysed surface topography and aperture maps of Isa

Local Cubic Law
environment. The image analysed surface topography and aperture maps of Isa
(2001) d O il i t l (2002) d t d fi th h i l b d i f thLocal Cubic Law, (2001) and Ogilvie et al (2002) were used to define the physical boundaries of th( 00 ) a d Og e e a ( 00 ) e e used o de e e p ys ca bou da es o
P i lidit f L l C bi L LCL f fl fl G ’ tiPresuming validity of Local Cubic Law, LCL, for flow flux, Ge’s equation was
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compute the pressure field (Ge 1997)H 3 compute the pressure field (Ge, 1997).
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where F is the vector of the flow flux H is the separation distance or local aperture of the
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where, F is the vector of the flow flux, H is the separation distance or local aperture of the

f t i th l l di t li d t th fl id d i th d i i it where P( ) is fluid pressure H( ) is the aperture of the fracture c is a factor fofracture, ∇P is the local pressure gradient applied to the fluid and μ is the dynamic viscosity where, P(x,y) is fluid pressure, H(x,y) is the aperture of the fracture, c is a factor fofracture, ∇P is the local pressure gradient applied to the fluid and μ is the dynamic viscosity ( y) p ( y) p
aperture value τ is the fracture tortuosity (Walsh & Brace 1984) Constantof the fluid Fracture wall roughness should cause an overestimation of this permeability if it aperture value, τ is the fracture tortuosity (Walsh & Brace, 1984). Constantof the fluid. Fracture wall roughness should cause an overestimation of this permeability if it conditions were defined for both fluid input and output faces Zero pressure was dconditions were defined for both fluid input and output faces. Zero pressure was d

is of the same order of magnitude as fracture aperture variation However in laminar flow fluid output face As the equation is linear with respect to pressure P the wholeis of the same order of magnitude as fracture aperture variation. However, in laminar flow fluid output face. As the equation is linear with respect to pressure P, the whole
systems (to which the majority of subsurface flow belongs) roughness will not affect the field may be predicted from a single solution at any pressure difference betweensystems (to which the majority of subsurface flow belongs), roughness will not affect the field may be predicted from a single solution at any pressure difference between
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output faces. The Ge’s equation does not account for Reynold’s Numbers as it
mean flow velocity or flux as viscous drag near the fracture walls dampens the effect of

ou pu aces e Ge s equa o does o accou o ey o d s u be s as
th t i ti l ff t li ibl ll N li b d diti tmean flow velocity or flux as viscous drag near the fracture walls dampens the effect of that inertial effects are negligibly small. Non-slip boundary conditions were set

h (R ld N b < 1) P di ti f th LCL th f t f
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rough surfaces of the fracture and the remaining sides of the fracture weroughness (Reynolds Number < 1). Predictions of the LCL worsen as the fracture surfaces rough surfaces of the fracture, and the remaining sides of the fracture weg ( y ) g g
symmetrical (slip) boundary conditions A fine triangular finite element grid wasare brought together due to an increase in in-plane tortuosity Overestimations of fracture symmetrical (slip) boundary conditions. A fine triangular finite element grid wasare brought together due to an increase in in-plane tortuosity. Overestimations of fracture the fracture using iteratively refined Delaunay triangulation A stationary linear s

bilit ft d t i i t i f th ti b t f t
the fracture using iteratively refined Delaunay triangulation. A stationary linear s

permeability are often due to inappropriate averaging of the separation between fracture used to get the solutionp y pp p g g p used to get the solution.
walls the mechanical aperture H All mean values depend upon the mean surface heights ofwalls, the mechanical aperture, H. All mean values depend upon the mean surface heights of
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As the above equation is linear with respect to pressure field, P(x,y), only one sol
the two surfaces used to define the fracture aperture. However, it is common to quote the

q p p , ( ,y), y
computed for every combination of fracture type and flow direction When this sthe two surfaces used to define the fracture aperture. However, it is common to quote the computed for every combination of fracture type and flow direction. When this s

mean aperture for the scenario where the relative mean surface heights of the two surfaces
p y yp

multiplied by any factor the result is also a solution of Ge’s equation (Gmean aperture for the scenario where the relative mean surface heights of the two surfaces multiplied by any factor, the result is also a solution of Ge s equation (G
corresponding to another value of pressure head applied to the fracture After theused to define the fracture aperture are such that the fracture surfaces just touch The simple corresponding to another value of pressure head applied to the fracture. After theused to define the fracture aperture are such that the fracture surfaces just touch. The simple
field was obtained the map of the flow flux was computed from the Local Cubic

arithmetic mean aperture H is well defined but of little practical use for fluid flow
field was obtained, the map of the flow flux was computed from the Local Cubic

arithmetic mean aperture, Ha, is well defined, but of little practical use for fluid flow law states a linear connection between the flow flux and the pressure gradient sp , a, , p law states a linear connection between the flow flux and the pressure gradient s
fl i l li l ti l t th h d li d t th f t ( lcalculations The geometric mean aperture H is well defined if the surfaces do not touch flux is also linearly proportional to the pressure head applied to the fracture (as localculations. The geometric mean aperture, Hg, is well defined if the surfaces do not touch, u s a so ea y p opo o a o e p essu e ead app ed o e ac u e (as o
R ld’ N b i ll d th b ti i lid)

b t ll t if th f t h t i t if th t f th
Reynold’s Number is small and the above equation is valid).

but collapses to zero if the surfaces touch at one or more points even if the rest of the
y q )
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aperture is patent to flow The harmonic mean aperture H is also well defined but again it An integral of the flow flux across the flow direction yields overall flux or flow chaperture is patent to flow. The harmonic mean aperture, Hh, is also well defined but again it An integral of the flow flux across the flow direction yields overall flux or flow ch
ll t if th f t h T th bl d fi th d l ratio of the flow charge to the pressure head applied to the fracture charactecollapses to zero if the surfaces touch. To overcome the problem, we define the dual mean, ratio of the flow charge to the pressure head applied to the fracture charactecollapses to zero if the surfaces touch. To overcome the problem, we define the dual mean,

fracture transmissibility This value was computed for every fracture type and for e
H This is the arithmetic mean of the geometric mean apertures along all fracture profiles in

fracture transmissibility. This value was computed for every fracture type and for e
di ti i d t d i h d li t f th f tHdm. This is the arithmetic mean of the geometric mean apertures along all fracture profiles in direction in order to derive hydraulic aperture of the fracture.dm direction in order to derive hydraulic aperture of the fracture.

the direction of presumed fluid flow through the fracture It has a physical basis and isthe direction of presumed fluid flow through the fracture. It has a physical basis, and is

sensitive to anisotropy in the plane of the fracture i e it has different values in differentsensitive to anisotropy in the plane of the fracture, i.e., it has different values in differentpy p
MEAN APERTURESdirections through the fracture We use the dual mean in the two cartesian directions in the MEAN APERTURESdirections through the fracture. We use the dual mean in the two cartesian directions in the MEAN APERTURES

l f th f t d F th di ti thi i d fi dplane of the fracture x and y. For the x-direction this is defined as,p y ,
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The Dual Mean in both
h N N th di i f th t id i th d di ti (mThe Dual Mean in both 

where Nx, Ny are the dimensions of the measurement grid in the x and y directions, s 
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directions across the fracture 
respectively A is the value of the fracture aperture at the grid point with indexes (i; j) and urrespectively, Aij is the value of the fracture aperture at the grid point with indexes (i; j), and rt

u 1aperture shows a better
Hd i th d l t t d ith t t di ti ( f th fl ) W h eraperture shows a better 
Hdmx is the dual mean aperture computed with respect to x-direction (of the flow). We have apcorrelation to the modelledp p p ( ) acorrelation to the modelled 
tested the dual mean by finite element modelling and applied it to five rough fractures for an

 

h d li t thtested the dual mean by finite element modelling and applied it to five rough fractures for eahydraulic aperture than a 
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which the physical and hydraulic aperture are known. The dual means in both directions Mstandard arithmetic meanwhich the physical and hydraulic aperture are known. The dual means in both directions standard arithmetic mean 

across the fracture apertures show a much better correlation to the modelled hydraulic apertureacross the fracture apertures show a much better correlation to the modelled hydraulic aperture.  

apertures than standard arithmetic mean apertures We conclude that this is a pragmaticapertures than standard arithmetic mean apertures. We conclude that this is a pragmatic

approach to calculating the mean aperture of a fracture where the surfaces touch at at least 0Experimentally obtainedapproach to calculating the mean aperture of a fracture where the surfaces touch at at least 0Experimentally obtained pp g p
0 1hydraulic aperture b shows noone point 0 1hydraulic aperture bh shows no one point. Modelled hydraulic aperture bh (mmcorrelation to mechanical Modelled hydraulic aperture bh (mmcorrelation to mechanical 

aperturesp
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d ts used to The performance of Reynold’s equation forThe performance of Reynold’s equation forp y q
flow within a channel of constant aperture inflow within a channel of constant aperture in
which there is embedded a constriction The⎞∂ which there is embedded a constriction. The
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or effectiveor effective
pressurepressure

defined for Pressure gradientPressure gradientdefined for Pressure gradientPressure gradient
e pressure
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A comparison of streamline prediction for a fracture of constante pressure A comparison of streamline prediction for a fracture of constant

input and aperture using the Reynold’s and Ge’s equation is given ininput and aperture using the Reynold s and Ge s equation is given in
assumes Figure 1. Unlike the Reynold’s equation prediction, the Ge’sassu es
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Figure 1. Unlike the Reynold s equation prediction, the Ge s
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Fl di tiFl di ti equation streamlines follow the topography. Hydraulic aperture,p

ere given Flow directionFlow direction equat o st ea es o o t e topog ap y yd au c ape tu e,
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0 M
Flow direction
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bh, calculated from the modelled data (i.e., from the integral ofg

set up in 0 Max0 Max0 Max h, ( , g
flux and pressure head) is in close agreement with the profiledset-up in 000 flux and pressure head) is in close agreement with the profiled

solver was
) g

mechanical apertures b resulting from a dual mean (Figure 1)solver was mechanical apertures, bm resulting from a dual mean (Figure 1).
This is a better correlation than when using an arithmetic meanThis is a better correlation than when using an arithmetic mean.
It is therefore possible to continue using the LCL to predict
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It is therefore possible to continue using the LCL to predict
h d li t h ibi d l h i llution was hydraulic aperture when prescribing a dual mean mechanical

solution is
 hydraulic aperture when prescribing a dual mean mechanical

t Thi t t ti ll l l f tsolution is aperture. This constant ratio allows large-scale fracture
Ge 1997)
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networks to be populated with parallel plates with the effect ofGe, 1997), networks to be populated with parallel plates with the effect of
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roughness (Brush & Thomson 2003)e pressure roughness (Brush & Thomson, 2003).
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o the flowo the flow
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arge The The performance of Ge’s equation for flowarge. The The performance of Ge s equation for flow
ferises the within a channel of constant aperture in whicherises the within a channel of constant aperture in which

th i b dd d t i ti Th ff tevery flow P di tP di t
there is embedded a constriction. The effectevery flow Pressure gradientPressure gradient of the pore is taken into acco nt b Ge’sPressure gradientPressure gradient of the pore is taken into account by Ge’sp y
equationequation.
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