Interpretation in Reservoir
Models

Force Seminar “Challenges related to fault modelling workflows ‘
Steve Ogilvie
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TALK COMPONENTS

® Talk Objectives:

« Key factors that need to be considered when building and QCing a fault model,
* Their material impact upon all aspects of petroleum value chain

B Types & Importance of Fractures

B Big vs. Small Faults

® Well cuts

M Structural Geology

B QC of Fault Framework
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TYPES OF FRACTURES

/ Stylolites \

AkerBP

Devonian Sandstones, Arbroath, UK Devonian Sandstones, Caithness, UK

Faults are the focus of this seminar but other fractures need to be considered in the Geomodel
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IMPORTANCE OF FAULTS

(a) Juxtaposition Seal (b) Process seal

|

Mature sst

X

Immature sst

After Gibson (1998)

M Sealing of hydrocarbons over geological time
M Barriers during production
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Clay smear, Kirkmaky, Azerbaijan



MULTIPLE SLIP SURFACES

* More than 1 slip surface, A+ B

Relay zone

Fault rock or
L Fault core
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Fault zone

Damage zone

Childs et al (2009)

Fault in Devonian Sandstone, (Dwarick Head) Caithness, UK
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SAND ON SAND — INNER MORAY FIRTH

SCOTLAND

Fort widesm

Google Maps, . M*

St Andrews

Google Earth
Lossiemouth Fault Damage Zone
Southern shore Moray Firth Basin, UK




SAND ON SAND — INNER MORAY FIRTH

Strike Slip
Deformation bands = = = =
Lossiemouth Fault == me

Google Earth
Lossiemouth Fault Damage Zone
Southern shore Moray Firth Basin, UK




SAND ON SAND — INNER MORAY FIRTH

 Damage zone is a large splay fault with
compound zones and ladder structures

o, v e NG 8

Plan view of compound zone ‘ § -

Compound zone of deformation bands at location 1




SAND ON SAND — INNER MORAY FIRTH

Cross-Section b - b’ Moray Firth Prospect
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SAND ON SAND — INNER MORAY FIRTH

(C) - 1000
(a) Gas Permeability image (b) Core image — w0 §
* Slabbed sample with ; ISR 0 3
deformation bands , §
from damage zone e ; =
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Storage capacity
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Sw (%)

* Increase in Sw (c),
reduction in storage
capacity (d)

Legend (mD)
 Driven by burial at P T
29.6 |to 192

time of faulting 2Tl 507
397 to 682
682 to 785
785 to 899

e Although shallow 8% _[io] 1090

1090 [to] 1220

burial faults can seal T
also

[N

w
Distance across D-band (mm)

1850 [to] 3080

o
O
=
o
=
[
N
o
N
w

Thin Section of D-band
5cm Porosity (%)

Image analysis

From Ogilvie et al (2001)



SAND ON SAND - BRENT PROVINCE

Excellent examples in N Viking Graben in Brent
reservoirs

Don Field [a]: Oil migrated into area from North,
sealing faults (not large enough to offset entire
Brent Gp) have deflected migrating oil, explains
dry holes @

Field development issues with small faults (<10
m throw) in Cormorant Field [b], (Stiles & Mckee,
1986)
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[:] oil accumulation il fault known to seal across sand-sand contact

Oil migration map of Don Field, North Sea
(Hardman & Booth, 1991)

<= updip migration of oil



SELECTING FAULTS

® \Where throw < thickness, rely upon process

M 1D sensitivity plots very useful if clay-rich I
Highly interbedded sand/shale unit
B Small faults in highly interbedded (sand/shale) often l
seal

M Can be used to support throw criteria for inclusion of
faults in grids

Highest NTG well chosen as worst case

AkerBP



SELECTING FAULTS — WELL DATA

H Wells should be checked for evidence of faults

M Thickness in vertical wells is a good place to start

M Reduce seismic uncertainty and detect sub-seismic faults

/ Missing section \

\_ /

AkerBP
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O AT
SELECTING FAULTS — WELL DATA 'Seismic section Valhall Field

SRR

B Thickness variation across 3 wells (a) can be explained by a normal fault interpreted on seismic (b)
B |s bottom of chalk at fault plane (c) or does well enter fault or related fault sooner (d)

B Biostrat indicates that (d) is correct v
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SELECTING FAULTS — WELL DATA

M Faults can also be detected from changes in bedding dip [1] and azimuth [2]

B And directly from image logs (c)

(a) Cumulative Bedding Dip Plot
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(b)

Azimuthal Walk out Plot
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(c) Image log
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(a)

SELECTING FAULTS — WELL DATA

M Zone of disturbance or "Damage Zone” width calculated (a, b) from appraisal wells

B Data used for planning stand off to fault for future development wells (c)
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Fault influence

Clair Field data (Ogilvie et al, 2015)
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Planned well 1/Ridge platform
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SELECTING FAULTS — WELL DATA

M Line of evidence approach
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M |deally marked on map once drilled a well @

® |dentify sub-seismic faults

® Handles different seismic interpretations

Map view of fault polygons
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STRUCTURAL MODEL - STRIKE SLIP

B Often not interpreted on seismic as interpretation in dip sections

B As with dip slip faults, can be significant barriers to flow

. Dextral Strike-slip fault, Kirkmaky Valley
. 1. Drag folding in shaley sand (good kinematic
indicator)

: 2. Cataclasticdeformation bands in clean sandstone

C— o ——

Strike — Slip Faults on the floor of Kirkmaky Valley, Azerbaijan
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QC - FAULT DRAG

(b) (e) Moo

B Normal drag (a, b) — common in ductile rocks like shale f“l\)loray‘F‘iFth‘Easin ] RES _dep SO0

B Material impact of drag (c) drag scenario from seismic, (d) non-drag

B Drag from bedding dip tadpoles (e).

http://www.ogilviegeoscience.co.uk/blog/2017/7/10/implications-of-fault-drag-1
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QC - FAULT THROW/LENGTH

B Implications for fluid communication

B Faults often mapped longer than they should be
B |n reality are shorter segments

B Consistent with well performance ?

Map view of different fault interpretations on giant anticline Short faults linked by re|ay ramps at Ki|ve’ Somerset

http://www.ogilviegeoscience.co.uk/blog/2017/6/17 [fault-framework-qc
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QC - FAULT THROW/LENGTH

e g e 4 Hanging wall
B Implications for well planning and drilling AL T R Sl (R S

B On seismic, only throws > c. 20m can be resolved (A, B) ! s~
B Fault tip position can be misjudged (A,C) — ahead of it is a process zone (A)
B These weak zones may be prone to mud invasion, try avoid drilling there |
B Blank out fault where throw close to resolution

B Continue it based upon throw gradient knowledge, add process zone

ryfaultig in Hopema Sndton ,_
Inner Moray Firth
A B C

a b
a a’ b b’
a’ b’

http://www.ogilviegeoscience.co.uk/blog/2017/6/17 [fault-framework-qc
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CONCLUSIONS
The following should be considered when building a fault model

* Faults which completely offset the reservoir should be included in simulation grid
* Seismic data is a primary data set but is limited by resolution
* Smaller faults can be important, creating large pressure differences across them

 May need to be included, perhaps at a later stage
e Use 1D fault throw diagrams in clay rich rocks
e Sand —on sand needs geohistory

* Fault cuts on maps with key cross sections (vertical wells) should be starting point for
structural interpretation

* Use all available data (e.g., Google Earth, wells) and underpin by structural geology

* Fault model needs QC for fault length, throw and consider drag as all can impact
dynamic simulation and well planning
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