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ABSTRACT

Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture
surface profiling is necessary to tune the properties of numerical fractures required in fluid flow
modelling to those of real rock fractures. This is achieved using a variety of (i) mechanical and (ii)
optical techniques. Stylus profilometry is a popularly used mechanical method and can measure
surface heights with high precision, but only gives a good horizontal resolution in one direction on
the fracture plane. This method is also expensive and simultaneous coverage of the surface is not
possible. Here, we describe the development of an optical method which images cast copies of
rough rock fractures using in-house developed hardware and image analysis software (OptiProf™)
that incorporates image improvement and noise suppression features. This technique images at
high resolutions, (15×15×15 µm), and is cheap and non-destructive, providing continuous coverage
of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the
rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated
using 2 devices with accurately known thickness; (i) a polycarbonate tile with wells of different
depths and (ii) a wedge-shaped vial made from silica glass. The data from each of the two surfaces
can be combined to provide an aperture map of the fracture for the scenario where the surfaces
touch at a single point or any greater mean aperture. The topography and aperture maps are used to
provide data for the generation of synthetic fractures, tuned to the original fracture and used in
numerical flow modelling.

Keywords: fracture topography, image acquisition, optical imaging.

INTRODUCTION

Surface roughness has a large influence upon fluid flow through fracture systems (Brown, 1987).
Accurate surface parameterisation is required for incorporation of realistic fracture roughness into
models of fluid flow for rough fractures. Synthetic fractures can then be created which are tuned to
share these features (Isakov et al., this volume). Only then can these numerical fractures be used for
modelling fluid flow using the local cubic-law (Oron and Berkowitz, 1999), or by solution of the
Reynold’s or Navier Stoke’s equations (Zimmerman and Yeo, 2000).

Surface data acquisition techniques fall into two main categories; (i) optical and (ii) mechanical,
both of which are comprehensively reviewed in the literature (e.g., Adler and Thovert, 1999; Develi et
al., 2001). Mechanical methods such as stylus profilometry (e.g., Brown and Scholz, 1985) can
measure surface heights with high precision, but only give a good horizontal resolution in one
direction (c. 0.02 µm) on the fracture plane. The resolution in the other direction can be greater than
1000 µm. Furthermore, this method is expensive and simultaneous coverage of the surface is not
possible. Laser profilometry uses a laser instead of a mechanical needle, and interferometry of the
reflected light to measure the height of the surface (Voss and Shotwell, 1990). Counter-intuitively,
perhaps the laser profilometer has a worse resolution than the needle/mechanical method. It also
suffers the same profiling and alignment problems as the mechanical profilometer.

This has motivated our development of a non-destructive optical method (Isakov et al., submitted),
which provides continuous coverage of cast copies of rough rock fractures (xy-size 120×120 mm) at
high resolutions (15×15×15 µm) using in-house developed hardware and image analysis (OptiProf™)
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software that incorporates image improvement and noise suppression features. Such
spectrophotometric analysis (SA) of fracture surfaces has up to 1 order of magnitude greater spatial
resolution than nuclear magnetic resonance (NMR) or computerised tomography (CT) scanning of real
fracture surfaces (Renshaw et al., 2000).

There are several technical difficulties to overcome in the imaging process including dynamic
noise in light source and video stream and static distortions in the video signal. These have been
resolved by OptiProf™ software that (i) calibrates the imaging system, (ii) controls the capture of
images, (iii) makes appropriate corrections, and (iv) calculates the final measured topography of the
surface.

Statistical analysis of these surfaces is carried out using in-house software ParaFracTM, which feeds
SynFracTM software, to create numerical fractures tuned to contain these properties (Isakov et al., this
volume).

METHODS AND MEASUREMENT

MATERIALS
Three rock samples were trimmed to form blocks with 120×120×100 mm nominal dimensions.

Rough fractures were artificially created by stress exposure around the sample block. Each fracture
half was taken, cleaned with compressed air and placed on a glass working surface (Fig. 1). Thin
polycarbonate walls were added to the sides of the sample and Silastic ERTV® was poured over the
surface. The mixture then cures to a white rubber with negligible shrinkage and exothermic heating,
allowing the complex structure to be accurately reproduced without damage by thermal stresses. The
rubber was pealed off the surface and placed, rough surface uppermost, on the glass surface and
surrounded by walls. Bondaglass  clear casting resin was poured in on top of the Silastic peal and
allowed to set. The cast HFPM was then trimmed to 100×100×30 mm and polished. The quality of
reproduction of this technique is illustrated in Fig. 2. Scanning electron microscope (SEM) images of
original rock fracture (a) and cast (b) illustrate a very high fidelity of reproduction (c. 1 µm).

Fig. 1. Preparation of High Fidelity Polymer Models (HFPMs) from rock fracture surfaces.
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a b

Fig. 2. The quality of reproduction of fracture surfaces by HFPMs. a: SEM backscattered image of the
surface of the original rock and b: exactly corresponding area of the resulting HFPM. A gas bubble in
(b) usefully distinguishes between the two images.

DEVICES
Each of the HFPMs was subjected to digital optical imaging (Fig. 3). Thin polycarbonate walls

were built up around the sides of each HFPM (Fig. 3a) and placed on a light box under a digital colour
camera (640×480 pixels, 8-bit grey-scale depth), which was attached to a PC equipped with a video
capture board (Fig. 3b). The HFPM was imaged 20 times, first while containing distilled water, and
then while containing the same amount of dyed water. These images represent the extent to which the
incident intensity of light is absorbed by the presence of the HFPM and the fluid covering the surface.
The ratio of the intensity of light for a given pixel at a given location on the fracture between the
images containing dye and those containing water is related to the thickness of fluid covering the
rough surface. This is described by the Lambert-Beer Law,

TcK
ox eII −= , (1)

where, Ix is the intensity of the transmitted light, Io is the intensity of the incident light, K is a material
dependent property describing the efficiency with which a material adsorbs light, c is the concentration
of the material, and T is the thickness of the material through which the light has passed.

a b

Fig. 3. Digital optical imaging setup. a: HFPM surrounded by polycarbonate walls and filled with dye
to be imaged by digital optical imaging equipment (b).
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CALIBRATION

a b

Fig. 4. Calibration devices used to calculate the topography of rough surfaces. a: polycarbonate tile
with 9 pockets of known thickness and b: secondary tile device with thickness variation from 0 on the
left to 4.3 mm on the right.

The fluid thickness is calculated from the measured intensity ratio by experimental calibration of
dyed and undyed fluids, which provides a measurement of the light extinction properties of the dye.
This was carried out using two devices with accurately known fluid thicknesses (Fig. 4); (i) a
polycarbonate tile with 9 wells with depths from 0.25 mm to 4.00 mm, (ii) a wedge-shaped vial made
from silica glass (aperture varies linearly from 0.00 mm to 4.30 mm). Each pocket of the tile was filled
with dyed water. The tile was then imaged, producing 8-bit greyscale images, intensities varying from
0 to 255 (Fig. 4a), and a clearfield equalization was performed to remove any spatial variations in
incident light intensity from the image. The corrected image was divided pixel by pixel by that of the
undyed water to remove the effect of polycarbonate composing the tile and its cover plate. The
resulting image was analysed in SigmaScan Pro 5  to obtain the number of pixels present in each well
for each intensity value, 0 to 255 (Fig. 5a). Gaussian curves were fitted to this data to obtain the mean
intensity value and the standard deviation in intensity for each well. A calibration curve was then
constructed of intensity ratio as a function of fluid thickness from the data for all nine wells including
error bars representing the standard deviations of intensity ratio and thickness (Fig. 5b). A similar
process was carried out for the wedge filled with both dyed and undyed water (Fig. 4b). As the wedge
provides a continuous variation of thicknesses and dye intensities, it was possible to obtain 440 data
point pairs of intensity/thickness values (Fig. 5b). The tile calibration and the wedge calibration are in
close agreement, and the standard deviation of the tile intensity data, well constrains the wedge data.
Furthermore, the wedge-derived data shows that the calibration is uniform between the tile-derived data
points. This calibration curve is linear on the log-lin scales used in this diagram and therefore conforms to
the Lambert-Beer Law. A function fitted to the tile-derived calibration data provides us with a conversion
from intensity ratio to dye thickness that allows each pixel of the fracture intensity ratio map to be
converted to a thickness of dye below the fluid surface. As the fluid surface is flat, we can therefore derive
a measurement of the surface height at each pixel location from the calibrated fluid thicknesses.

         
Fig. 5. Calibration results. a: Individual pockets of the tile analysed for intensity distributions,
b: Ratio of intensity of images for HFPMs containing dye to those containing water against depth of
dye. The errors in this data are well constrained by scatter in the wedge data. Note the slight non-
linearity in the wedge data due to slight curvature in the glass plates used to make the wedge.
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CORRECTIONS
It is now possible to image the individual fracture surfaces while they are covered with first the

dyed and then the undyed water. These images are then calibrated using the data from the procedure
already described to provide a map of the fluid thickness above the rough surface topography. The
resulting data can be transformed simply to provide a fully determined topography for each surface,
and data from each of two surfaces can be combined to provide an aperture map of the fracture for the
scenario where the surfaces touch at a single point or any greater mean aperture. There are, however,
several technical difficulties to be overcome during the imaging process which are corrected for by the
OptiProfTM software. The variation in some of these features is small, but noticeable, and will
contribute to errors in the final calculated heights of the surface and hence aperture, if not corrected
for. The problems and their solutions are listed in Table 1.

Table 1. Technical difficulties encountered during the imaging process and their solutions, which are
incorporated into OptiProfTM software.

Technical Difficulty Solution
1. Fluid Level Control: Each of the fractures must be
filled with dyed and undyed water up to exactly the
same arbitrary level.

A horizontal datum line is marked onto opposite walls
surrounding the fracture. Lining these up and filling to
this level removes the parallax errors.

2. Lateral alignment: The imaged surface must be in
exactly the same xy position for imaging with dyed
water and undyed water even though it must be moved
for replacing the fluids.

Four fixed reference points within the software are set
over point marks that are etched into the top of the
walls surrounding the fracture These are used to
realign the HFPM when removed and refilled.

3. Dynamic noise in the imaged light intensity: From
the light source and video stream. Leads to variations in
brightness of the imaged intensities.

Taking multiple images of the HFPM with each fluid
in place, and averaging the result pixel by pixel

4. Static noise in video signal: A stripe effect on an
image of a uniform field, which varies with camera lens
aperture.

The variation in the sensitivity of the CCD between
each pixel on its surface was removed by calibrating
each pixel of the CCD individually, for every aperture.

5. Non-uniformity of the light source A clearfield equalization was performed.
6. Bubbles and dust in the fluids: Particles and
bubbles in the fluids are mobile if the fluid is perturbed.

The software compares multiple images with bubbles
and dust in different locations and recognizes
characteristics which move. These are removed from
the relevant images prior to averaging.

7. Opaque particles in the HFPM: Small and
uncommon. Obvious in the final image as thin low
intensity spikes.

Recognized and removed with the affected pixel being
reduced to the weighted mean of the surrounding 8
pixels.

RESULTS

Cast replicas of a suite of rock fractures have been imaged with the new technique. Profiling
results from a sample of sandstone are shown on Fig. 6. Included is a photograph of a fracture surface
(a) and the measured surface topography (b). The aperture is calculated when opposite surfaces touch
at a single point. In each case the profiles are very accurate representations of the fracture surfaces.
There are however some spikes in the profiles, which may be bubble artefacts in the HFPMs, which
were not removed by the image processing techniques described. These should have no bearing upon
synthetic modelling of these surfaces (Isakov et al., this volume).

Fig. 6. One fractured surface of sandstone sample (a) and profile (b) produced using OptiProfTM.

a b
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DISCUSSION AND CONCLUSIONS

A new, fast and inexpensive method has been developed that allows the numerical determination
of the surface topography and aperture of rough fractures in rocks. This method has a high lateral
resolution, which was 15 µm (to image 10×7.5 mm of the fracture surface) for our camera/imaging
set-up but can be better than this if higher resolution cameras are used. The method has a similar
height resolution (15 µm) for our set-up, but again could be much smaller and much better if 16-bit
(62.5 nm) or 24-bit (0.25 nm) imaging hardware is used. The method relies on the calibration of a
dyed fluid, which obeys the Lambert-Beer Law, and has been successfully tested upon a range of real
rock fractures. High fidelity polymer models (HFPMs) of the rock fractures are used which are now
accurate to within 1 µm. Other technical developments, which make existing concepts into a useful
method include (i) multiple imaging, (ii) clearfield equalisation, (iii) stacking, (iv) bubble detection,
(v) static detection, (vi) individual pixel calibration and (vii) precise filling. These techniques have
been built into software (OptiProfTM) specifically written for the task in C++. This is also used to
calculate the final measured topography of the surface. The data is input into SynFracTM software
which produces any possible combination of synthetic fractures, tuned to the fracture geometries of the
real rock fractures but have differing physical topographies. The modelled apertures together with
experimental flow data are input into two-dimensional flow models (Ogilvie et al., this volume). This
technique, and the developed hardware and software is not restricted to use with rock surfaces, but can
be applied for the imaging and measurement on any rough surface in any material.

This work was funded by the Natural Environmental Research Council of the UK, as part of the
Micro-to-Macro Thematic Programme.
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