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Permeability governs the movement of fluids through pore networks of porous media. Applications include 

enhancement of hydrocarbon recovery, management of water resources, improved geothermal energy strategies 

and the safe design of toxic and radioactive waste repositories. It is an elusive parameter in hydrocarbon 

reservoirs as it is very difficult, if not impossible, to determine directly using current sub-surface logging 

technology. It is a complex interplay of porosity, pore connectivity, grain packing, grain size, rock electrical 

properties and rock diagenesis. From these data, empirical equations are popularly used in the oil industry to 

calculate permeability. Nelson (1994) suitably divided these into (i) surface area (e.g., Coates et al. 1991), (ii) 

pore size (e.g., Kozeny-Carmen; Swanson, 1981) and (iii) grain size (e.g., Berg 1970; Van Baaren 1979) models.  

The popular Kozeny-Carmen model has been modified many times since the 1930s but the working equation is,  
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where, c = constant, d = median grain size (µm), φ = porosity. 

From mercury injection capillary pressure (MICP) data, Swanson (1981) created a relation based on 319 cleaned 

sandstone and carbonate samples from 74 formations, 

KS=339 (Shg/P)apex
1.691                                                                                                                      (2) 

where, (Shg/P) is the value of the mercury saturation divided by the pressure that corresponds to the apex of the 

mercury saturation divided by pressure against pressure.  
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The scatter in cross-plotting permeability and porosity is primarily a result of variable grain size, which has a 

large influence upon the total wetted surface properties of rocks. Therefore, Berg (1970) suggested that 

permeability should be predicted using the square of grain size and raising the porosity to an exponent of ~5,  

                                                                 
1.522104.8 φdKB ××= −

                                                        (3) 

where, d = grain size (µm), φ = porosity. 

Here we introduce the use of an improved (analytical) method, the RGPZ model named after its authors, Revil, 

Glover, Pezard and Zagora (Revil et al. 1997; Revil & Glover 1998,1999), which considers the link between 

electrical conductivity and fluid permeability of a porous rock. The relationship requires a mean grain size, d, for 

the rock, a packing parameter, a, effective porosity, φ, and Archie’s exponent, m, and is analytically very simple. 

We show that the relationship is a clear improvement upon the above prediction laws based on grain size 

estimation, including the Kozeny-Carmen relationship (1). The difficulty in applying the model to down-hole 

measurements is how to obtain the grain size upon which the model depends. We demonstrate that NMR 

measurements are able to provide a mean grain size with sufficient accuracy to produce good permeability 

estimations. The working equation is, 
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where, KRGPZ = RGPZ predicted permeability, d = mean grain size (µm), φ = porosity, m = cementation 

exponent, a = packing parameter.   

Figure 1 shows the RGPZ model implemented as a function of its major parameters, over ranges exceeding those 

commonly encountered in reservoir rocks. The shape of the poroperm plots (a) to (c) is convex-up in a similar 

way to many poroperm plots for similar lithologies. The model is highly sensitive to changes in φ, m and d, but 

not to a. Therefore a constant is used for a.  
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Figure 1 Behaviour of the RGPZ model as a function of its major parameters. (a) Predicted permeability as a 
function of porosity for various values of cementation exponent. (b) Predicted permeability as a function of porosity 
for various values of grain size. (c) Predicted permeability as a function of porosity for various values of the packing 
parameter. (d) Predicted permeability as a function of cementation exponent for various values of porosity. 
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We have examined this model using high quality routine core analysis (RCAL) data from a set of carbonate and 

clastic reservoir rocks from a suite of wells (Table 1).   

Table 1  RCAL inputs for the RGPZ model 

 Grain Size, d 
(microns) 

Packing 
parameter, a 

Porosity 
φ 

Cementation 
exponent, m 

Permeability 
(mD) 

Carbonates Mercury 
Injection 
Porosimetry 

Constant Mercury 
Injection 
Porosimetry 
 

Electrical 
measurements 
=F/φ 

Nitrogen gas 

Clastics 
 

Mercury 
Injection 
Porosimetry 

Constant 
 

Mercury 
Injection 
Porosimetry 

Electrical 
measurements 
=F/φ 

Nitrogen gas 

 

RGPZ Core predictions 

The NMR experiment conducted on core is almost identical to the NMR log measurement (Coates et al.  1999), 

therefore once tested on RCAL data we have tested the RGPZ model using log input parameters from NMR 

logs.  

The grain size is calculated at each injection pressure from MICP data, and a modal grain size derived for each 

individual sample (5). Where no MICP data is available, mean grain sizes are determined from thin-section 

images. These are checked against thin-section photographs and are very accurate. 

Grain size determinations on powdered samples using MICP analysis are fairly routine (Carli & Motta, 1989); 

these are less common for rock samples: 
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Grain diameter = KP * AC / 1000 / P              (5) 

 

where, KP = packing constant (i.e. 4.65 for cubic packing as recommended for use in the porosimeter manual), 

AC = parameter defined by a conical model for pore-size calculations, P = pressure (bars). This equation is a 

slight modification to the Washburn equation for calculating pore sizes from MICP data; it is highly relevant to 

carry out a sensitivity analysis of this equation to packing parameter variation.  

The success of permeability prediction is gauged with reference to a 1:1 line between predicted and measured 

permeabilities (Figs. 2,3). A constant packing parameter, a, of 8/3 (for perfect spherical grains) is used in the 

RGPZ model as it is insensitive to a (Fig. 1c). The model performs better over five orders of magnitude than 

KKOZENY-CARMEN for a range of clean and immature reservoir analogue rocks (Fig. 2). It is also better for the 

subsurface clastics than for the carbonates (Fig. 3). However, the use of cementation exponent, m, causes a 

considerable shift of the carbonate predictions towards the 1:1 line of predicted vs measured permeabilities. 

Also, the model tends to slightly overpredict the permeability of the more poorly sorted quartz wackes (Fig. 3). 

For the subsurface samples, it is clear that the Swanson (2) and Berg (3) models vastly underpredict and 

overpredict permeability respectively (Fig. 3). 
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Figure 2  RGPZ permeability predictions for a range of outcrop sedimentary rocks (i.e. variable grain sizes and 
sorting) from onshore U.K. compared to measured permeabilities (i) Fascally sandstone (Jurassic), Brora, Scotland, 
(ii) Lochaline Sandstone (Cretaceous), Morven, Scotland, and (iii) Portland and Purbeck Limestones. The Kozeny-
Carmen model shows much greater scatter than the RGPZ model around the 1:1 line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3  Comparison of best scenario for RGPZ model (i.e. variable m, packing parameter 8/3, MICP modal grain 
size & φ) with common grain size (Berg) model and pore-size (Swanson & KC) models. For the Swanson model, only 
data from samples with MICP data are used as this model relies upon MICP data.  For the clastics, quartz arenites 
are closer to the 1:1 line than more poorly sorted quartz wackes. 
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RGPZ Log Predictions 

Extracting pore and grain sizes from NMR core data. 
Now that we have fully and successfully tested the model with routine core analysis (RCAL) input parameters, 

we have inputted log data into the model. The aim is to replace the standard Coates model for permeability 

prediction on Geolog 6.4 (NMR module) with the RGPZ model. The parameters and logs are  

(i)  Porosity by conventional methods directly from the electrical logs. 

(ii)  Cementation exponent from special core analysis (SCAL) data. 

(iii)  Constant packing parameter from established rock matrix models. 

(iv)  Grain size from NMR core and log data. 

We have developed a method to obtain grain sizes (iv) from NMR data as described below.  To obtain pore size 

distributions from NMR T2 distributions, we obtained a pore-scaling factor using (mercury injection) capillary 

pressure data, by methods described by Basan et al.  (1996) and Coates et al. (1999), (Fig.  4).  

To derive pore throats from NMR core data we calculated the effective relaxivity (ρe) from 2 parameters, 
 
                                           ρe = ρ /GDF                                                                         (6) 
where:  

ρ = the intrinsic surface relaxivity i.e., the conversion from T2 distributions to pore body size. A constant of 

50 µm/sec is commonly used for this purpose and used for all lithologies in this study.  

GDF = geometric dimensionless constant, i.e., the ratio of pore throat size to pore body size; the conversion 

of pore body size to pore throat size. This is greater for mud-dominated dolomites and limestones than 

grain-dominated lithologies. 
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Figure  4. The derivation of pore throats from NMR T2 amplitude data. This is the effective relaxivity (ρe), which is a 
product of the conversion of T2 data to pore bodies i.e., the intrinsic surface relaxivity, ρ, and the ratio of these pore 
bodies to mercury-injection derived pore throats, the geometric dimensionless factor, GDF. 

 
From MICP data, mean grain diameter (d) is calculated using, 

                                                             d = log y. ρe.      (7) 

Where, y = gradient of the relationship between MICP-derived grain sizes (5) and pore-throat sizes (~22.8), ρe = 

effective relaxivity.  

We can now directly relate these mean grain diameters (related to pore throat size by 22.8 i.e. y, gradient of the 

line) to the NMR derived pore size using the GDF.  

Mean grain diameter can now be calculated using, 

         d = 22.8 (T2.50/GDF)       (8) 

where, d = mean grain diameter, T2 = Logarithmic mean T2 (ms) from NMR tool.  

 

Genetic Algorithms and Fuzzy logic (GAFL) Techniques  

Two branches of soft computing known as genetic algorithms (GA) and fuzzy logic (FL) have emerged over the 

last decade offering complementary but robust techniques to analyse non-linear systems. We have applied these 

in order to develop a better permeability prediction technique for the NMR tool. 

Fuzzy logic is an analytical technique that asserts that the reservoir consists of several litho-types, each having 

characteristic distributions for permeability and electrical log values. It attempts to uncover the relationship 
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between these distributions. Genetic algorithms are models of computer learning, which derive their behaviour 

from an analogy of the processes of evolution in nature. Genetic algorithms, is a feedback technique, that asserts 

that there is a continuous functional relationship between the log values and permeability and attempts to 

“evolve” this relationship. They can provide the functional form of the equation as well as the constant 

parameters of the relationship.  

Conventional permeability prediction from the NMR using the Coates or SDR models use very little of the 

wealth of information contained in the T2 distribution. The Coates method compares two areas, FFI and BVI, 

beneath the T2 distribution separated by an arbitrary cutoff whereas the SDR method only uses a single piece of 

information, the logarithmic mean T2. GAFL techniques analyse the entire shape of the T2 distribution, 

attempting to unlock any information such as pore throat sizes or grain size diameters that could be related to 

permeability. 

The Applications of Fuzzy Logic to Permeability Prediction  

Permeability prediction using fuzzy logic asserts that a particular electrical log value can be associated with any 

formation attribute, but some are more likely than others. For instance, clean aeolian sand is most likely to have 

a high bulk density reading, although there is a finite probability that the sand has low density reading. Fuzzy 

logic attempts to uncover the relationship between these attributes. 

Rather than using a single value from the T2 distribution, such as the logarithmic mean value, fuzzy logic uses 

the shape of the distribution. The shape of T2 distribution is processed by slicing it into a 30 point numerical 

array t1,t2, t3, t4,…t30. 

The entire core permeability database is scanned by the fuzzy logic software and divided into twenty equally 

sized bins. That is to say that the bin boundaries are determined so that the number of core permeabilities in bin 

1 represents the twentieth percentile boundary of the core permeability data. Bin 2 represents the nineteenth 

percentile boundary and so on. The formation is thereby divided into 20 bins or litho-facies types each 

representing a range in permeability. The range in permeability is different for each litho-facies type but each are 

all assumed to be equally likely to found in the formation as they represent an equal number of core points.  
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We assert that each slice of the T2 array may belong to any of the permeability litho-facies, but some are more 

likely than others. The fuzzy logic software attempts to determine these probabilities by comparing each of the 

litho-facies bins to the T2 distribution array. The array data associated with levels in the well corresponding to 

bin 1 (very low permeability) are analysed and their mean and standard deviation calculated. In this way, not 

only is the average or most probable t value associated with bin 1 calculated, but also some idea of the 

uncertainty in the measurement or fuzziness is obtained. Each litho-facies has its own mean and standard 

deviation, such that for the 20 litho-facies types there are 20 pairs of µ and σ. In this way the T2 distribution is 

calibrated or conditioned to permeability. This 20 x 30 calibration array is stored in computer memory in order to 

make permeability predictions. 

The fuzzy possibility, F(t1f) of the first point in the T2 distribution array, t1 belonging to litho-facies type f 

compared to the fuzzy possibility of measuring the mean value µf is  

                                                            F(t1f) =
22 2/)1( ffte σµ−− . (9) 

This is the fuzzy possibility F(t1f) based on the first slice in the T2 array. This is done separately for each slice of 

the T2 distribution by repeating the process for the second slice of the T2 distribution array, t2. This will give 

F(t2f), the fuzzy possibility of the measured volume of t2 belonging to litho-facies type f. This routine is repeated 

for t3 etc. At this point we have thirty fuzzy possibilities (Ft2f), F(t2f), F(t3f) … F(t30f)) from different the 

measurement slices t1, t2, t3 .…t30 suggesting if that litho-facies type f is most probable. The fuzzy possibilities 

are combined harmonically to give the likelihood that the T2 distribution is associated with the first litho-facies 

type (f=1). This procedure is repeated for all twenty litho-facies types and as the permeability bins are of equal 

size, the probabilities can be directly compared to predict the most likely litho-facies and hence permeability 

associated with the shape of the T2 distribution at that depth in the well. The associated fuzzy possibility or 

"greyness" assesses the confidence of this prediction. The computer program then repeats the entire process at 

the next depth increment in the reservoir. Further information on this technique is described by Cuddy (2000). 
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The Applications of Genetic Algorithms to Permeability Prediction  

A genetic algorithm comprises variables and constants. The variables are, in this application, the thirty slices of 

T2 distribution that are typically recorded on a regular half-foot sample rate (i). A genetic algorithm attempts to 

evolve a relationship between the T2 distribution and core permeability by changing the constants. Our objective 

is to construct empirically a function g(t1, t2, t3…t30) which predicts permeability at each depth, i given (t1, t2, 

t3…t30) at each depth. We are therefore searching for an appropriate function of the form  

                                   Permeability = g(t1, t2, t3…t30) = a1.t1 + a2.t2+ a3.t3….a30.t30  (10) 

where a1…a30, are unknown constants. The next step is to provide a method for determining how good a given 

f(t1, t2, t3…t30) which is as a predictor of permeability. The approach we adopt is to sum deviations in 

prediction over all depth levels for a given borehole. We seek a function of the form Equation 10 which 

minimizes this sum. Mathematically, the problem can be stated as: 

                                  ∑
=

=

Ni

if
Minimise

1

: [Permeability - g(t1it22,t3i….t30i) ] (11) 

The genetic algorithms were constructed as follows. An initial population of individuals is picked randomly in 

the solution space. Each individual has randomly chosen constants a1…a30. The fitness criterion of each of 

these individuals is determined by Equation 11. The best existing algorithm for minimising Equation 11 starts 

with a randomly generated g and uses local search by mutating the coefficients one at a time. The coefficients 

are initially allowed to undergo large mutations in order that the individuals search all of the solution space. 

After a number of generations, a pool of individuals is selected, by linear ranking, for mutating and cloning. 

Mating is achieved by coefficient merging. Some of the best individuals are cloned to add more individuals, 

where solutions are most promising. After a number of generations the percentage change in mutated 

coefficients is gradually reduced. The algorithm stops when the percentage improvement in evaluation reaches a 

predefined lower limit or a maximum number of iterations has been reached.  

In the language of genetic algorithms we have a CHROMOSOME which is a vector of length 30. The 

CHROMOSOME is as in genetics, a structure than contains all the genes. The genes are floating point values that 

represent the coefficients a1…a30. The initial population is generated by creating chromosomes with random 

floating point numbers for the coefficients a1…a30. The gene is modified by multiplication by a randomly 



Submitted to DIALOG. 17.09.02 

-12- 
 

picked value from a certain range. This range decreases in value as the number of generations increases. This 

provides a method that allows the search to become more local towards the end of the algorithm as better 

solutions emerge. Further information on this technique is described in Brown et al. (2000). 

Comparison between Models 

A comparison between the RGPZ model implemented for the clastics with predictions by (i) Coates, (ii) SDR 

and GAFL (genetic algorithm-fuzzy logic) methods is shown in Figure 5. All methods are conditioned to the 

core data in this well. 

For the sandstone interval, the log mean T2 is 419 ms and the standard cut-off is 32 ms. From this, the mean 

grain size is calculated as 14500 µm2 (120 x 120 µm) and where bound water exists it is 1100 µm2. This is a 

realistic grain size for the studied sandstones as verified by core analysis data. 

Clearly, the RGPZ model works better over the interval than the standard NMR models, and in certain intervals, 

compared to GAFL (genetic algorithm - fuzzy logic) methods. The RGPZ model does not work so well in the 

mid section (65-100 ft). This is likely a result of the cementation exponent being held constant. Current SCAL 

studies may help us understand how this varies throughout the reservoir. We are working to refine the RGPZ 

model with additional core analysis data in order to improve the permeability predictions further.  
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Figure 5.  Permeability prediction in the study well using  

(i) SDR, (ii) Coates, (iii) RGPZ, (iv) Genetic Algorithm and (v) Fuzzy Logic methods  
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Conclusions 

The RGPZ and GAFL models work exceptionally well as a permeability predictor on core and log data, 

performing better overall than the SDR and Coates models.  The following constraints for the RGPZ model do 

not preclude its use for permeability prediction in the reservoir: 

1. the F and m values are derived from saline water bearing rock, 

2. the rock is unfractured such that F >> 1 (also Coates/SDR do not account for fractures), 

33..  the model is not used in the limit φ→1 (i.e.  100% porosity).    
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