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Background: Fractures
Fractures are common in Earth’s crust & exist on wide 
range of scales. 2 types: Open & Closed

Mechanical properties of host rock play important role 
in determining hydraulic properties of fractures

The impact of fractures upon fluid flow has many 
practical applications:

Flow channelling and compartmentalisation in hydrocarbon & 
water reservoirs

Control of contamination by domestic & chemically toxic 
industrial waste, & remediation

Design of safe repositories for nuclear waste

Hot dry rock/Geothermal energy projects



Deformation Bands (Aydin, 1978)

• Large impact upon flow properties of reservoir, in 
sub-seismic domain

• Downscaling; L & D related through power-law 
& fractal in nature. Scaling varies with lithology

• Use of lithology in prediction; clean vs. impure 
sandstones

• Must understand spatial distribution & internal 
structure to remove uncertainty in role in fault 
seal analysis

• Information from core material/outcrop
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Formation of Deformation Bands

• Strain hardening (localisation) mechanism

• Wider fault zone > axial strain

• Granulation initially intense, closely associated with slip 
but levels off with further slips having little effect on 
comminution (Engelder, 1974)

• Gouge strands = matrix supported, large grains 
surrounded by smaller particles.

• Sammis et al. (1987), probability of fracture decreases as 
size of neighbour decreases 



CONVENTIONAL CORE ANALYSES
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1 Deformation band 62.5 13.3 9.01  4 - 10 555 0.0034 - 397

2 Transitional 23.2 20.5 18.35 10 - 15 677 29.6 - 899
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PRESSURE-DECAY PROFILE 

PERMEAMETRY (Jones, 1992)

• High resolution (0.001 mD) KL -corrected 

measurements

• Probe technique; pressure decay used to

measure permeability

• High Resolution permeability images

• 2D measurement therefore a fraction of the       

volume measured using conventional     

permeametry



PDPK SETUP
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1cm grid
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Critical role of clay content in fault rock development can be assessed accurately if 

phyllosilicate content logs are generated from sedimentary analysis of reservoir 

stratigraphies

Juxtaposition of reservoir against low permeability units & shale smear not only sealing

mechanisms



Cemented Deformation Bands
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Summary

• Role of d-bands in fault seal through integrated geometrical & 
microstructural studies

• Microstructure characterisation; influences fault rock 
distribution & juxtapositions- but geohistory critical !

• Formation dependant upon protolith

• Higher resolution measurements of smaller rock volumes

reduces uncertainty in role in fault seal. 

• Downhole tool information on fault contents require 
validation against core material as the detection of some 
materials (e.g., kaolinite) may not be a simple process. 



High Resolution Aperture 
Determination of Rough Fractures
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Structure

1) Experimental work on fracture modelling
• Importance of surface roughness

• Flow experiments

• Construction of physical models & development of high 
resolution optical method to determine fracture apertures

2) Computer modelling

• “In house” profiling software

• Numerical synthesis of fractures 



Importance of Surface Roughness

In absence of filling materials, flow of fluids 
controlled by roughness of fracture walls & physical 
separation

Variation in roughness associated
with rock type & texture 

Hence replacement of parallel
plate assumption, central
to all multi-fracture network flow
models.

Stress regime, mean aperture, fluid properties and 
flow rate etc. also affect fluid flow



Flow Imaging of HFPMs

Measurement of fluid flow through

synthetic rough fractures using DOI

Fluids may be miscible or immiscible

for a range of flow rates viscosities

and densities

Sample may contain analogue gouge material



PET-Scanning of Fluid Flow
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Development of Optical Method

Fracture roughness profiles measured using
mechanical profilometers/ photogrammetry/
shadow profilometers etc

Time consuming & low resolution due to nature
of measurement.

Quantitative descriptions of fracture geometry
e.g., application of statistical methods to
estimate asperity height characteristics/ spatial
distributions



Optical Method for Imaging 
Apertures

High-resolution optical method

to determine synthetic fracture

apertures in a suite of rocks.

The absorption of light passing through the
fracture filled with dye can be used to derive the
2D aperture distribution using Lambert-Beer
Law

Ix=Ioe
-KcT

640  480

pixels

Aperture map



Digital Optical Imaging 

Figure 4. Isakov et al. (2000)
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(a)

Put Fracture 
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HFPM Construction

10 CM

HFPMs produced by casting
from moulds of rock fractures



HFPM Resolution

Original Fracture HFPM
150 mm

SEM used to see how well and to what scale the original 
rock has been reproduced in the epoxy resin replica.
Resolution < 1 micron



Calibration Devices

Tile with pocket areas of known 
thickness filled with dye (1g/l). 8 bit 
greyscale image obtained

0.25 mm

4 mm

Supporting data from wedge

with max. thickness of 4.3 mm



Lambert-Beer Law
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Optical Profiling of Fractures

Features of the choice:

• Cheap, does not require an 
expensive equipment.

• Fast (relatively), whole fracture 
surface to be scanned 
simultaneously.

• Accuracy of the method is 
subject of particular technique 
to be used.

Computational Flow Models require the geometry of flow 

channel to be prescribed. An optical method was chosen to 

explore the fracture surface profiles.



Technical Reality

Non-uniform backlight

Video channel distortions:

Coarse structures

CCD noise

Bubbles and particles in 

the liquid (water or dye)



Profiling Methodology

• Individual calibration of the pixels of CCD matrix.

• Stacked images to be taken with further averaging to 

neglect the camera noise.

• Clearfield equalization.

• Comparison of several images allow to recognize 

effectively bubbles and particles in liquid.

The methodology is implemented as a software 

algorithm.



Profiling Software

Image defects

Profile data



Automatic Defect Recognition

Resulting 

image

Defects 

map



Sample of Profiling Result
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Profiling Sample: Red Granite



Numerical Synthesis of Fractures

• The fracture surfaces 

should be similar in 

large scale of view and 

relatively independent 

at micro-scale.

• Fractal synthesis is used to generate fracture surfaces.



Synthesis methods

Brown (1995)

Glover et al. (1998)

Present method



Software for Numerical Synthesis



Result of Numerical Synthesis 

Pearly granite fracture surface Synthesized fracture surface



Summary 

An optical technique developed in this study has
provided high-resolution aperture determinations
of rough fractures.

Quicker & cheaper than PET/NMR techniques &
also used to observe and monitor fluid flow
through fractures

Rough fractures be profiled, and numerical 
synthetic fractures can be produced to high 
precision

Valuable results for 3D fluid flow modeling
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GRAIN-SIZE ANALYSIS
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