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About us

• We specialise in the provision of Fractured 
Reservoir, Structural Geology and 
Geomechanics services to the Energy 
Industry 

• Our focus is on in-field structural geology and 
geomechanics in the hydrocarbon appraisal
and development phases
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Objective

• To provide examples of where structural geology has added value and 
reduced uncertainty/risk throughout hydrocarbon appraisal and 
development

Key texts 

Role of geology throughout the value chain….

Gluyas, J & Swarbick, R. 2004. Petroleum Geoscience, Blackwell publishing. 

Industry focused structural geology….. 

Fossen, H. 2016. Structural Geology 2nd Ed, Cambridge Univ. Press
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1. Structural Interpretation 
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1.1 Anderson’s (1951) classification
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• Normal faults tend to form at 60°

• Reverse faults tend to form at 30°

• Strike slip faults at 90°

When Interpreting

• Make sure you’re seismic section is 1:1

• Best to use greyscale
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1.1 Low angle normal faults 
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Can form directly along a pre-existing 
weakness

OR

by fault block rotation 
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Ogilvie et al. (2015)
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SS faults on the floor of Kirkmaky Valley, Azerbaijan

A

B

A
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1.1 Strike-Slip Faults

• Often not interpreted on seismic
• Can be significant barriers to flow 
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1.1 Fault length
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2 km 2 km
✓

Map view of different fault interpretations on giant anticline

Issue: Faults often mapped longer than they should be.
Workflow: Length vs. throw – typical range for sedy rocks is 1:10 to 1:30 (Shultz et al. 2006)
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Throw vs Length



1.1 Fault length
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2 km 2 km
✓

Map view of different fault interpretations on giant anticline
Short faults linked by relay ramps in Limestone, Kilve, Somerset

Outcome: Shorter faults consistent with well data
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1.1 Fault tips

Issue: Tip extent can be misjudged. Ahead of the tip is a process zone of fractures – weak 
zones prone to mud invasion = risk of losses. Avoid drilling here as may need to sidetrack ! 

Map view Section view

Workflow: Blank out fault where throw close to resolution, continue it based upon throw 
gradient, add process zone.
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Process zone
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1.1 Fault tips

Outcome
• 1 well drilled without losses
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

Well trajectory 2

✓

Map view

Well trajectory 1

Can also try to aim for the centre of the fault

• Next one had issues – did it hit another fault that was poorly imaged ? 
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Fault Propagation Fold, Niger Delta
Virtual Seismic Atlas: David Iacopini

1.2 Steeply Dipping Beds
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Not Interpreted Interpreted

Reverse fault 
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1.2 Steeply Dipping Beds
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Issue: Structural Interpretation 
of poorly imaged zones as 
impacts reserves, well 
planning, production.

Oil Field in Venezuela
Virtual Seismic Atlas: Alan Roberts

Deformation bands in 
sandstone
Permeability reduction
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1.2 Steeply Dipping Beds
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Fault propagation fold in dolomite, Marsden Bay, England
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1.2 Steeply Dipping Beds

Reverse fault
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Fold Hinges

2 interpretations 

Oil Field in Venezuela
Virtual Seismic Atlas: Alan Roberts
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1.2 Steeply Dipping Beds

Reverse fault
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Fold Hinges

Workflow: Dipmeters, outcrop analogues
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1.2 Steeply Dipping Beds

Reverse fault
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Fold Hinges

Outcome: Fold hinge interpretation, impacts accessible volumes, well targeting etc

 ✓

Unfaulted fold
Iraqi Kurdistan
(G. Banks 2010)
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1.3 Standoff to Faults 

Issue: Faults can cause wellbore instability, adverse impact upon production. 
How close can we place wells to the Clair Ridge Fault ?

Ogilvie et al. (2015)
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Map view (coherency)
Tertiary (570 m TVDSS)
Coherency
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Childs et al. (2009)

1.3 Standoff to Faults 

(a) (b)

A B

Damage Zone

Fault Zone

Fault in Devonian Sandstone, Caithness, UK
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Workflow



Workflow: Use literature plots (Childs et al. 2009) as a guide but best to use existing wells
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1.3 Standoff to Faults 
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Ogilvie et al. (2015)

Map view (coherency)
Tertiary (570 m TVDSS)
Coherency



Outcome: Early wells drilled at c. 40 m standoff (15m DZ + lateral fault uncertainty) = no issues
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1.3 Standoff to Faults 

5 m “damage zone” at 
seismic throw of c. 25 m 15 m “damage zone”

Ogilvie et al. (2015)
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2. Restoration 
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2.1 Construct Fault at Depth 

Rollover anticlines are a common type of folding in extensional basins 
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EAGE presentation
Ogilvie et al. (2007)

Bruce Field (North Sea)
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Issue: Given poor quality seismic, how do the 
faults extend/look with depth ? 

2.1 Construct Fault at Depth 
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Seismic 
interpretation of 
Fault

Seismic background removed
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Seismic background 
removed

Workflow: As the shape of the fault is related 
to the shape of rollover

• Can construct the fault at depth - using a 
Chevron construction. 

• Do this by hand for a simple vertical shear 
case.

Outcome: structurally more robust interpretation 
of fault with depth  

2.1 Construct Fault at Depth 
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2.2 Restoration in the North Sea 

Issue: Validate structural interpretation for a model build

Workflow: Rotate and translate blocks (by hand) – rigid block 
restoration   
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Redrawn from Fossen (2016) 
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Domino System

Eastern Horst

Gullfkaks

https://www.norskpetroleum.no/

Bergen 

Section across the Gullfaks Field, N Sea  



2.2 Restoration in the North Sea 
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Outcome: We can quickly arrive at a number of observations. Rigid body rotation not 
suitable here as there is evidence of ductile deformation (a chevron reconstruction 
required ?)  

- Cannot restore to 
perfectly horizontal
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(a)

(b)

60°dip
45°dipResidual displacement

• Pre-Statfjord faulting

• Thickening of grey unit

• Bumpy surfaces 

• 45° fault dip

• Messy, reverse faults 
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3. Fault Seal 
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3.1 Fault Seal 

Ogilvie et al. (2020)

Issue: Faults are commonly permeability 
barriers during field development.

Cormorant Field 
type issues
Stiles & McKee (1986) 
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10 m throw

Juxtaposition vs. Process Seal



3.1 Fault Seal
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How do we assess their impact in sandstones ? 
Minimum size of fault we need to handle ?

Workflows most advanced in clay – rich sandstones, less so in clean sandstones and 
carbonates  

• Allan diagrams for what’s juxtaposed across an interpreted fault

• Juxtaposition diagram

• Fault geometry

• Geo-history 
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Outcome

• Juxtaposition diagram (Knipe, 1997) is a 
rapid way of telling us which size of fault 
matters

• In this example, a fault with throw > 40 m 
would create a moderate – strong seal

32

3.1 Fault Seal – Juxtaposition diagram

Highly interbedded sand/shale unit

From Ogilvie (2019) FORCE presentation, Stavanger. 
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3.1 Fault Seal – Juxtaposition diagram

Our structural framework has

(i) faults with sufficient throw to set up 
juxtaposition seal,

(ii) faults with > 40 - 60 m throw, 

(iii) faults with < 40 m throw
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Field X

Map view of structural 
elements on an 
anticline

Process Seal 
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3.1 Fault Seal – Effective Framework

For initial simulation, we keep..

(i) Faults with sufficient throw to set up 
juxtaposition seal 

(ii) Faults with throw 40 – 60 m

• We leave out (but may need later) those < 40 
m throw 

Structural Framework

Selected faults for 
Simulation
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Use to support throw criteria for inclusion of faults in grids 



35

Normal Drag in Jurassic Limestones/Shales, Kilve, UK. 

3.2 Fault Drag

• Soft rocks develop more drag than stiff rocks.
• Distinctive pattern of bedding dip  on image log interpretations 
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• Cannot use clay-based algorithms

• Understand geo-history - burial depth at 
time of faulting e.g., Deformation bands 
in S North Sea created at > 3 km burial 
depths – mechanical reduction in grain 
size creates large reductions in 
por/perm.   

• Also form at shallow burial - some Gulf 
of Mexico Fields have large reductions 
in permeability – related to preferential 
crushing of weak lithic fragments etc ? 
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3.3 Low clay content

Rotliegende Sst, Southern N Sea
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Hopeman Sandstone (age equivalent) 



Google Earth 
Lossiemouth Fault Damage Zone
Southern shore Moray Firth Basin, UK

Strike Slip
Deformation bands
Lossiemouth Fault

80 m

N

3.3 Hopeman Sandstone, Inner Moray Firth 

Looking W along L-Fault zone

b

b’



b ‘b

BB

ORS

HS

BB : Burghead Beds 

HS : Hopeman Sandstone

ORS : Old Red sandstone

LF

LF : Lossiemouth Fault

3.3 Hopeman Sandstone, Inner Moray Firth 



Strike Slip
Deformation bands
Lossiemouth Fault 80 m

N

5cm

(d)

3.3 Hopeman Sandstone, Inner Moray Firth 

White deformation bands
PLAN VIEW

1

b

Compound zone of deformation bands
SECTION VIEW
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13.3 %
555 mD

20.5 %
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25 %
1750 mD

Sample Number:
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Image analysis 
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3.3 Hopeman Sandstone, Inner Moray Firth 

• Significant 
reduction in 
petrophysical 
properties
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4. Fractured Reservoirs
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4.1 Fractured Reservoir
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• Naturally fractured reservoirs

• Permeability assist or essential (Nelson 
classification)

• Knowing which type is key to 
development strategy 
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e.g., Basement 
e.g., Clair Field 

e.g., Statfjord Field



4.1 Fractured Reservoir
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• Below seismic resolution – joints and 
shear fractures 

• Large uncertainty from whereabouts to 
dynamic performance 

• Larger engineering/geomechanics 
element to their characterisation than 
in fault seal studies.

Jointed flagstones, Caithness, Scotland
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4.1 Fractured Reservoir

Fractured Dolomites, Marsden Bay, NE England (Cliff view)

Diffuse 
Fractures

Swarms

Joints in Limestone, Kilve Pill, Somerset (Map view)

Wennberg et al (2005) – Zagros, Iran
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4.2 Appraisal Case 

Bradley et al. (2019) – conceptual 
model modified from Johri et al 
(2014)

Workflow: Create appraisal plan for oil bearing, fractured ? 
Mudstone in shallow section of Valhall Field.
In-situ stress and core/image logs
Outcome: Shear fractures in damage around seismic scale faults. 

Valhall

https://www.norskpetroleum.no/

Stavanger

19 m Fault Core Zone

8 m Damage Zone

Slickenlined Shear Fractures in intact core

Extends below cored section (image log)



4.2 Appraisal Case 

Well X

Modified from 
FracPaq manual
Not actual field 
data 

Slip Tendency

Critical Stress• But we don’t know much about their flow potential ! 
• In-situ stress data allows us to display conductive orientation  

Breakouts

Drilling 
induced 
tensional 
fractures

Log data – Dipole Sonic
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Fast 
direction 

Fast 
direction 

Holford & 
Tassone
(2015)

Bradley et al. (2019)
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4.2 Appraisal Case

Juxtaposition Seal Process Seal Sand on sand Fractures around fault Pervasive fracturing

• This is a likely scenario for appraise value case

• Carry a range of reservoir descriptions for 
appraise value case

From Ogilvie (2019) NPD Stavanger 
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Fractures around seismic scale fault

From Ogilvie (2019) NPD Stavanger 



Examples of where Structural Geology can and has reduced uncertainty 
and added value to various appraisal and development projects 

1. Structural Interpretation

• Guidelines to create/QC a robust structural model for geomodelling, reduce 
drilling risk. 

• Reduce structural uncertainty in steep limb area to reduce uncertainty in 
reserves, improve well target (reduce risk of encountering poor quality rock)

• Correct standoff of wells to faults to reduce drilling risks, avoid poor quality 
rock

5. Conclusions
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2. Restoration
• Construct fault with depth to reduce structural uncertainty for geomodelling
• Perform restoration to reduce structural uncertainty for geomodelling 
• These can be carried out by general practitioners to provide a structurally valid interpretation

3. Fault Seal 
• Faults can be barriers during development. Method shown to sort out what size (throw) matters creates 

effective fault framework for dynamic simulation
• Workflows relatively well established for sandstone, but not where low clay content and in carbonates.
• Geo-history especially key for clay free sandstones (same sand juxtaposed), illustrated using outcrop example

4. Fractured Reservoir 
• Natural fractures can add permeability
• Large uncertainty, particularly in absence of well tests 
• Data integration is key ! 
• Don’t dive into DFN models – sketch out concepts, assess probabilities based upon available data – appraisal 

case study N Sea

5. Conclusions – part 2 
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